For steady incompressible flow, the co ntinuity equation is
["\\partial u \/ \\partial x + \\partial v\/\\partial y+\\partial w\/\\partial z" ]=0
u=y+z , v=z+x, w=x+y
"\\partial(y+z)\/\\partial x+\\partial(z+x)\/\\partial y+\\partial(x+y)\/\\partial z=0\\\\\n[0+0+0]=0\\\\\nTherefore,the given flow field is a possible case of steady incompressible fluid flow\\\\" --show that the motion is irrotational
V=(y+z)i + (z+x)j +(x+y)k
V is irrotational if curl V=0
"I"
curl V="\\nabla\u00d7V"
"\\begin{vmatrix}\n i &&& j&&& k\\\\hi\n \\partial\/ \\partial x &&& \\partial\/\\partial y&&& \\partial\/ \\partial z \\\\\n(y+z)&&&(z+x)&&&(x+y)\n\\end{vmatrix}\\\\\ni[\\partial\/\\partial y(x+y)-\\partial\/\\partial z (z+x)]-j[\\partial\/\\partial x(x+y)-\\partial\/\\partial z(y+z)]+k[\\partial\/\\partial x(z+x)-\\partial\/ \\partial y(y+z)]\\\\\n=0\\\\\nCurl V=\\nabla\u00d7V=0\\\\\nV \\> is \\>irrotational\\\\\n3) Velocity \\> potential=\\phi =? \\\\\nV=\\nabla\\phi------(1)\\\\\nd\\phi={(\\partial\\phi\/\\partial x)dx + (\\partial\\phi\/\\partial y)dy + (\\partial\\phi\/\\partial z)dz}.(idx +jdy+kdz)\\\\\nd\\phi=(i\\partial \/\\partial x)+(j\\partial\/\\partial y)+(k\\partial\/\\partial z)\\phi.dr \\\\\nd\\phi = \\nabla \\phi.dr------(2) \\\\\ndr=idx+jdy+kdz \\\\\nV=\\nabla\\phi \\> put \\> in \\> eqn(2) \\\\\nd\\phi = V.dr \\> equation (3)\\\\ \nV=(y+z)i+(z+x)j+(x+y)k \\\\\nput\\>in \\> eqn(3) \\\\\nd\\phi={(y+z)i +(z+x)j + (x+y)k}.dr\\\\\nd\\phi={(y+z)i +(z+x)j + (x+y)k}.(idx+jdy+dz) \\\\\nd\\phi=(y+z)dx + (z+x)dy + (x+y)dz \\>(4)\\\\\nd\\phi = ydx+zdx+zdy+xdy+xdz+ydz\\\\\nd\\phi=(xdy+ydx)+(xdz+zdx)+(ydz+zdy)\\\\\nProduct \\> of \\> two \\> function\\\\\nd\\phi=dxy+dxz+dyz\\\\\nOn \\> integration \\\\\n\\phi=xy+xz+yz+ C \\\\\nWhere\\>C\\> is \\> integration \\> constant\\\\\n\\phi \\> is\\> the\\>velocity\\>potential."
Comments
Leave a comment