For steady incompressible flow, the co ntinuity equation is
[∂ u / ∂ x + ∂ v / ∂ y + ∂ w / ∂ z \partial u / \partial x + \partial v/\partial y+\partial w/\partial z ∂ u / ∂ x + ∂ v / ∂ y + ∂ w / ∂ z ]=0
u=y+z , v=z+x, w=x+y
\partial(y+z)/\partial x+\partial(z+x)/\partial y+\partial(x+y)/\partial z=0\\
[0+0+0]=0\\
Therefore,the given flow field is a possible case of steady incompressible fluid flow\\ --show that the motion is irrotational
V=(y+z)i + (z+x)j +(x+y)k
V is irrotational if curl V=0
I I I
curl V=∇ × V \nabla×V ∇ × V
∣ i j k h i ∂ / ∂ x ∂ / ∂ y ∂ / ∂ z ( y + z ) ( z + x ) ( x + y ) ∣ i [ ∂ / ∂ y ( x + y ) − ∂ / ∂ z ( z + x ) ] − j [ ∂ / ∂ x ( x + y ) − ∂ / ∂ z ( y + z ) ] + k [ ∂ / ∂ x ( z + x ) − ∂ / ∂ y ( y + z ) ] = 0 C u r l V = ∇ × V = 0 V i s i r r o t a t i o n a l 3 ) V e l o c i t y p o t e n t i a l = ϕ = ? V = ∇ ϕ − − − − − − ( 1 ) d ϕ = ( ∂ ϕ / ∂ x ) d x + ( ∂ ϕ / ∂ y ) d y + ( ∂ ϕ / ∂ z ) d z . ( i d x + j d y + k d z ) d ϕ = ( i ∂ / ∂ x ) + ( j ∂ / ∂ y ) + ( k ∂ / ∂ z ) ϕ . d r d ϕ = ∇ ϕ . d r − − − − − − ( 2 ) d r = i d x + j d y + k d z V = ∇ ϕ p u t i n e q n ( 2 ) d ϕ = V . d r e q u a t i o n ( 3 ) V = ( y + z ) i + ( z + x ) j + ( x + y ) k p u t i n e q n ( 3 ) d ϕ = ( y + z ) i + ( z + x ) j + ( x + y ) k . d r d ϕ = ( y + z ) i + ( z + x ) j + ( x + y ) k . ( i d x + j d y + d z ) d ϕ = ( y + z ) d x + ( z + x ) d y + ( x + y ) d z ( 4 ) d ϕ = y d x + z d x + z d y + x d y + x d z + y d z d ϕ = ( x d y + y d x ) + ( x d z + z d x ) + ( y d z + z d y ) P r o d u c t o f t w o f u n c t i o n d ϕ = d x y + d x z + d y z O n i n t e g r a t i o n ϕ = x y + x z + y z + C W h e r e C i s i n t e g r a t i o n c o n s t a n t ϕ i s t h e v e l o c i t y p o t e n t i a l . \begin{vmatrix}
i &&& j&&& k\\hi
\partial/ \partial x &&& \partial/\partial y&&& \partial/ \partial z \\
(y+z)&&&(z+x)&&&(x+y)
\end{vmatrix}\\
i[\partial/\partial y(x+y)-\partial/\partial z (z+x)]-j[\partial/\partial x(x+y)-\partial/\partial z(y+z)]+k[\partial/\partial x(z+x)-\partial/ \partial y(y+z)]\\
=0\\
Curl V=\nabla×V=0\\
V \> is \>irrotational\\
3) Velocity \> potential=\phi =? \\
V=\nabla\phi------(1)\\
d\phi={(\partial\phi/\partial x)dx + (\partial\phi/\partial y)dy + (\partial\phi/\partial z)dz}.(idx +jdy+kdz)\\
d\phi=(i\partial /\partial x)+(j\partial/\partial y)+(k\partial/\partial z)\phi.dr \\
d\phi = \nabla \phi.dr------(2) \\
dr=idx+jdy+kdz \\
V=\nabla\phi \> put \> in \> eqn(2) \\
d\phi = V.dr \> equation (3)\\
V=(y+z)i+(z+x)j+(x+y)k \\
put\>in \> eqn(3) \\
d\phi={(y+z)i +(z+x)j + (x+y)k}.dr\\
d\phi={(y+z)i +(z+x)j + (x+y)k}.(idx+jdy+dz) \\
d\phi=(y+z)dx + (z+x)dy + (x+y)dz \>(4)\\
d\phi = ydx+zdx+zdy+xdy+xdz+ydz\\
d\phi=(xdy+ydx)+(xdz+zdx)+(ydz+zdy)\\
Product \> of \> two \> function\\
d\phi=dxy+dxz+dyz\\
On \> integration \\
\phi=xy+xz+yz+ C \\
Where\>C\> is \> integration \> constant\\
\phi \> is\> the\>velocity\>potential. ∣ ∣ i hi ∂ / ∂ x ( y + z ) j ∂ / ∂ y ( z + x ) k ∂ / ∂ z ( x + y ) ∣ ∣ i [ ∂ / ∂ y ( x + y ) − ∂ / ∂ z ( z + x )] − j [ ∂ / ∂ x ( x + y ) − ∂ / ∂ z ( y + z )] + k [ ∂ / ∂ x ( z + x ) − ∂ / ∂ y ( y + z )] = 0 C u r l V = ∇ × V = 0 V i s i rro t a t i o na l 3 ) V e l oc i t y p o t e n t ia l = ϕ = ? V = ∇ ϕ − − − − − − ( 1 ) d ϕ = ( ∂ ϕ / ∂ x ) d x + ( ∂ ϕ / ∂ y ) d y + ( ∂ ϕ / ∂ z ) d z . ( i d x + j d y + k d z ) d ϕ = ( i ∂ / ∂ x ) + ( j ∂ / ∂ y ) + ( k ∂ / ∂ z ) ϕ . d r d ϕ = ∇ ϕ . d r − − − − − − ( 2 ) d r = i d x + j d y + k d z V = ∇ ϕ p u t in e q n ( 2 ) d ϕ = V . d r e q u a t i o n ( 3 ) V = ( y + z ) i + ( z + x ) j + ( x + y ) k p u t in e q n ( 3 ) d ϕ = ( y + z ) i + ( z + x ) j + ( x + y ) k . d r d ϕ = ( y + z ) i + ( z + x ) j + ( x + y ) k . ( i d x + j d y + d z ) d ϕ = ( y + z ) d x + ( z + x ) d y + ( x + y ) d z ( 4 ) d ϕ = y d x + z d x + z d y + x d y + x d z + y d z d ϕ = ( x d y + y d x ) + ( x d z + z d x ) + ( y d z + z d y ) P ro d u c t o f tw o f u n c t i o n d ϕ = d x y + d x z + d yz O n in t e g r a t i o n ϕ = x y + x z + yz + C Wh ere C i s in t e g r a t i o n co n s t an t ϕ i s t h e v e l oc i t y p o t e n t ia l .
Comments