Described area:
Then
"V = \\pi \\int\\limits_a^b {\\left( {{f^2}(x) - {g^2}(x)} \\right)dx} = \\pi \\int\\limits_{ - 2}^3 {({{(x + 8)}^2} - {{({x^2} + 2)}^2}} )dx ="
"= \\pi \\int\\limits_{ - 2}^3 {\\left( {{x^2} + 16x + 64 - {x^4} - 4{x^2} - 4} \\right)dx = } \\pi \\int\\limits_{ - 2}^3 {\\left( { - {x^4} - 3{x^2} + 16x + 60} \\right)dx = }"
"= \\pi \\left( { - \\left. {\\frac{{{x^5}}}{5}} \\right|_{ - 2}^3 - \\left. {{x^3}} \\right|_{ - 2}^3 + \\left. {8{x^2}} \\right|_{ - 2}^3 + 60\\left. x \\right|_{ - 2}^3} \\right) ="
"= \\pi \\left( { - \\frac{{243 + 32}}{5} - (27 + 8) + 8(9 - 4) + 60(3 + 2)} \\right) = \\pi \\left( { - 55 - 35 + 40 + 300} \\right) = 250\\pi"
Comments
Leave a comment