Answer to Question #142081 in Calculus for Promise Omiponle

Question #142081
Find the mass and center of mass of the lamina that occupies the region bounded by y=x+ 2 and y=x^2, where the density at any point is given by σ(x,y) = 3x^2.
1
Expert's answer
2020-11-05T16:39:36-0500

The intersection between the curves y=x+2y=x+2 and y=x2y=x^2 is,


x+2=x2x+2=x^2


x2x2=0x^2-x-2=0


x22x+x2=0x^2-2x+x-2=0


x(x2)+1(x2)=0x(x-2)+1(x-2)=0


(x+1)(x2)=0(x+1)(x-2)=0


x=1,2x=-1,2


So, the point of intersection between the curves are (1,1),(2,4)(-1,1),(2,4)


The sketch of the region of lamina is as shown in the figure below:





The mass of the lamina is evaluated as,


m=Dσ(x,y)dAm=\iint_{D}\sigma(x,y)dA


=D3x2dA=\iint_{D}3x^2dA


=12x2x+23x2dydx=\int_{-1}^{2}\int_{x^2}^{x+2}3x^2dydx


=123x2(x+2x2)dx=\int_{-1}^{2}3x^2(x+2-x^2)dx


=12(3x3+6x23x4)dx=\int_{-1}^{2}(3x^3+6x^2-3x^4)dx


=[3(x44)+6(x33)3(x55)]12=[3(\frac{x^4}{4})+6(\frac{x^3}{3})-3(\frac{x^5}{5})]_{-1}^{2}


=454+2(9)995=\frac{45}{4}+2(9)-\frac{99}{5}


=18920=\frac{189}{20}


Therefore, the mass of the lamina is m=18920m=\frac{189}{20}


The xx -coordinates of the center of mass is evaluated as,


xbar=1mDxσ(x,y)dAx_{bar}=\frac{1}{m}\iint_{D}x\sigma(x,y)dA


=20189Dx(3x2)dA=\frac{20}{189}\iint_{D}x(3x^2)dA


=2018912x2x+23x3dydx=\frac{20}{189}\int_{-1}^{2}\int_{x^2}^{x+2}3x^3dydx


=20189123x3(x+2x2)dx=\frac{20}{189}\int_{-1}^{2}3x^3(x+2-x^2)dx


=2018912(3x4+6x33x5)dx=\frac{20}{189}\int_{-1}^{2}(3x^4+6x^3-3x^5)dx


=20189[3(x55)+6(x44)3(x66)]12=\frac{20}{189}[3(\frac{x^5}{5})+6(\frac{x^4}{4})-3(\frac{x^6}{6})]_{-1}^{2}


=20189(995+452632)=\frac{20}{189}(\frac{99}{5}+\frac{45}{2}-\frac{63}{2})


=20189(545)=\frac{20}{189}(\frac{54}{5})


=87=\frac{8}{7}


The yy -coordinate of the center of mass is evaluated as,


ybar=1mDyσ(x,y)dAy_{bar}=\frac{1}{m}\iint_{D}y\sigma(x,y)dA


=20189Dy(3x2)dA=\frac{20}{189}\iint_{D}y(3x^2)dA


=2018912x2x+23x2ydydx=\frac{20}{189}\int_{-1}^{2}\int_{x^2}^{x+2}3x^2ydydx


=20189123x212[((x+2)2x4)]dx=\frac{20}{189}\int_{-1}^{2}3x^2\frac{1}{2}[((x+2)^2-x^4)]dx


=20189(32)12x2(x2+4x+4x4)dx=\frac{20}{189}(\frac{3}{2})\int_{-1}^{2}x^2(x^2+4x+4-x^4)dx


=20189(32)12(x4+4x3+4x2x6)dx=\frac{20}{189}(\frac{3}{2})\int_{-1}^{2}(x^4+4x^3+4x^2-x^6)dx


=20189(32)[x55+4(x44)+4(x33)x77]12=\frac{20}{189}(\frac{3}{2})[\frac{x^5}{5}+4(\frac{x^4}{4})+4(\frac{x^3}{3})-\frac{x^7}{7}]_{-1}^{2}


=20189(32)[335+15+121297]=\frac{20}{189}(\frac{3}{2})[\frac{33}{5}+15+12-\frac{129}{7}]


=20189(32)(53135)=\frac{20}{189}(\frac{3}{2})(\frac{531}{35})


=11849=\frac{118}{49}


Therefore, the yy -coordinate of the center of mass is ybar=11849y_{bar}=\frac{118}{49}



So, the coordinates of the center of mass is (xbar,ybar)=(87,11849)(x_{bar},y_{bar})=(\frac{8}{7},\frac{118}{49})




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment