The intersection between the curves "y=x+2" and "y=x^2" is,
"x+2=x^2"
"x^2-x-2=0"
"x^2-2x+x-2=0"
"x(x-2)+1(x-2)=0"
"(x+1)(x-2)=0"
"x=-1,2"
So, the point of intersection between the curves are "(-1,1),(2,4)"
The sketch of the region of lamina is as shown in the figure below:
The mass of the lamina is evaluated as,
"m=\\iint_{D}\\sigma(x,y)dA"
"=\\iint_{D}3x^2dA"
"=\\int_{-1}^{2}\\int_{x^2}^{x+2}3x^2dydx"
"=\\int_{-1}^{2}3x^2(x+2-x^2)dx"
"=\\int_{-1}^{2}(3x^3+6x^2-3x^4)dx"
"=[3(\\frac{x^4}{4})+6(\\frac{x^3}{3})-3(\\frac{x^5}{5})]_{-1}^{2}"
"=\\frac{45}{4}+2(9)-\\frac{99}{5}"
"=\\frac{189}{20}"
The "x" -coordinates of the center of mass is evaluated as,
"x_{bar}=\\frac{1}{m}\\iint_{D}x\\sigma(x,y)dA"
"=\\frac{20}{189}\\iint_{D}x(3x^2)dA"
"=\\frac{20}{189}\\int_{-1}^{2}\\int_{x^2}^{x+2}3x^3dydx"
"=\\frac{20}{189}\\int_{-1}^{2}3x^3(x+2-x^2)dx"
"=\\frac{20}{189}\\int_{-1}^{2}(3x^4+6x^3-3x^5)dx"
"=\\frac{20}{189}[3(\\frac{x^5}{5})+6(\\frac{x^4}{4})-3(\\frac{x^6}{6})]_{-1}^{2}"
"=\\frac{20}{189}(\\frac{99}{5}+\\frac{45}{2}-\\frac{63}{2})"
"=\\frac{20}{189}(\\frac{54}{5})"
"=\\frac{8}{7}"
The "y" -coordinate of the center of mass is evaluated as,
"y_{bar}=\\frac{1}{m}\\iint_{D}y\\sigma(x,y)dA"
"=\\frac{20}{189}\\iint_{D}y(3x^2)dA"
"=\\frac{20}{189}\\int_{-1}^{2}\\int_{x^2}^{x+2}3x^2ydydx"
"=\\frac{20}{189}\\int_{-1}^{2}3x^2\\frac{1}{2}[((x+2)^2-x^4)]dx"
"=\\frac{20}{189}(\\frac{3}{2})\\int_{-1}^{2}x^2(x^2+4x+4-x^4)dx"
"=\\frac{20}{189}(\\frac{3}{2})\\int_{-1}^{2}(x^4+4x^3+4x^2-x^6)dx"
"=\\frac{20}{189}(\\frac{3}{2})[\\frac{x^5}{5}+4(\\frac{x^4}{4})+4(\\frac{x^3}{3})-\\frac{x^7}{7}]_{-1}^{2}"
"=\\frac{20}{189}(\\frac{3}{2})[\\frac{33}{5}+15+12-\\frac{129}{7}]"
"=\\frac{20}{189}(\\frac{3}{2})(\\frac{531}{35})"
"=\\frac{118}{49}"
Comments
Leave a comment