SolutionMass of the cube
m=∫∫∫Eρ(x,y,z)dv=∫0a∫0a∫0a(x2+y2+z2)δz δy δx=∫0a∫0a[(x2+y2)(z)0a+(3z3)0a]δy δx=∫0a∫0a[(x2+y2)a+3a3]δy δx=∫0a[ax2(y)0a+a(3y3)0a+3a3(y)0a]δx=∫0a[a2x2+3a4+3a4]δx=∫0a[a2x2+32a4]δx=a2(3x3)0a+32a4(x)0am=3a5+32a5=a5−−−−−−−−−−−−>Mass of the cube
xˉ=m1∫∫∫Exρ(x,y,z)dv=m1∫0a∫0a∫0ax(x2+y2+z2)δz δy δx=m1∫0a∫0a[(4x4)0a+(y2+z2)(2x2)0a]δy δz=m1∫0a∫0a[4a4+2a2(y2+z2)0a]δy δz=m1∫0a[4a4(y)0a+2a2(3y3)0a)+2a2⋅z2(y)0a]δz=m1∫0a[4a5+6a5+2a3⋅z2]δz=m1∫0a[125a12+2a3⋅z2]δz=m1[125a12(z)0a+2a3(3z3)0a]=m1[125a6+61a6]=a51⋅127⋅a6=127a⟹xˉ=127a
yˉ=m1∫∫∫Eyρ(x,y,z)dv=m1∫0a∫0a∫0ay(x2+y2+z2)δz δy δx=m1∫0a∫0a[(x2+z2)(2y2)0a+(4y4)0a]δx δz=m1∫0a∫0a[2a2(x2+z2)0a+4a4]δx δz=m1∫0a[4a4(x)0a+2a2(3x3)0a)+2a2⋅z2(x)0a]δz=m1∫0a[6a5+4a5+2a3⋅z2]δz=m1∫0a[125a12+2a3⋅z2]δz=m1[125a12(z)0a+2a3(3z3)0a]=m1[125a6+61a6]=a51⋅127⋅a6=127a⟹yˉ=127a
Similarly By Symmetry
zˉ=127a
Center of mass (xˉ,yˉ,zˉ)=(127a,127a,127a)
Comments
Leave a comment