Question #142087
Find the surface area of the part of the circular paraboloid z=x^2+y^2 that lies inside the cylinder x^2+y^2=25.
1
Expert's answer
2020-11-10T19:44:29-0500

The area of a surface,z,abovea regionRof the Cartesianplane is given byS=R(zx)2+(zy)2+1dAz=x2+y2,zx=2x,zy=2yThe surface area over the regiondefined byx2+y2=25is given byS=R1+4x2+4y2dxdyConverting to Polar coordinatesS=R1+4x2+4y2dxdy=02π051+4(rcosθ)2+4(rsinθ)2rdrdθ=02π051+4r2(cos2θ+sin2θ)rdrdθ=02π051+4r2rdrdθ=02π112(1+4r2)3205dθ=02π112(101321)dθ=112(1011011)02πdθ=112(1011011)θ02π=112(1011011)2π=π6(1011011)\displaystyle \textsf{The area of a surface,}\,z, \, \textsf{above}\\\textsf{a region}\,R\, \textsf{of the Cartesian}\\ \textsf{plane is given by}\\ S = \iint_R \sqrt{\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 + 1}\, \mathrm{d}A\\ z = x^2 + y^2, \frac{\partial z}{\partial x} = 2x, \frac{\partial z}{\partial y} = 2y\\ \textsf{The surface area over the region}\\ \textsf{defined by}\, x^2 + y^2 = 25\, \textsf{is given by}\\ S = \iint_R \sqrt{1 + 4x^2 + 4y^2}\, \mathrm{d}x\,\mathrm{d}y\\ \textsf{Converting to Polar coordinates}\\ \begin{aligned} S &= \iint_R \sqrt{1 + 4x^2 + 4y^2}\, \mathrm{d}x\,\mathrm{d}y\\ &= \int_0^{2\pi}\int_0^5\sqrt{1 + 4(r\cos\theta)^2 + 4(r\sin\theta)^2}\, r\mathrm{d}r\mathrm{d}\theta \\ &= \int_0^{2\pi}\int_0^5\sqrt{1 + 4r^2(\cos^2\theta + \sin^2\theta})\, r\mathrm{d}r\mathrm{d}\theta \\ &= \int_0^{2\pi}\int_0^5\sqrt{1 + 4r^2}\, r\mathrm{d}r\mathrm{d}\theta \\ &= \int_0^{2\pi}\frac{1}{12}(1 + 4r^2)^{\frac{3}{2}}\biggr\vert_0^5 \,\mathrm{d}\theta \\ &= \int_0^{2\pi}\frac{1}{12}\left(101^{\frac{3}{2}} - 1\right)\, \mathrm{d}\theta\\ &= \frac{1}{12}\left(101\sqrt{101} - 1\right)\int_0^{2\pi}\mathrm{d}\theta \\ &= \frac{1}{12}\left(101\sqrt{101} - 1\right)\cdot\theta\vert_0^{2\pi} = \frac{1}{12}\left(101\sqrt{101} - 1\right)\cdot 2\pi \\ &= \frac{\pi}{6}\left(101\sqrt{101} - 1\right) \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS