Find the surface area of the part of the circular paraboloid z=x^2+y^2 that lies inside the cylinder x^2+y^2=25.
1
Expert's answer
2020-11-10T19:44:29-0500
The area of a surface,z,abovea regionRof the Cartesianplane is given byS=∬R(∂x∂z)2+(∂y∂z)2+1dAz=x2+y2,∂x∂z=2x,∂y∂z=2yThe surface area over the regiondefined byx2+y2=25is given byS=∬R1+4x2+4y2dxdyConverting to Polar coordinatesS=∬R1+4x2+4y2dxdy=∫02π∫051+4(rcosθ)2+4(rsinθ)2rdrdθ=∫02π∫051+4r2(cos2θ+sin2θ)rdrdθ=∫02π∫051+4r2rdrdθ=∫02π121(1+4r2)23∣∣05dθ=∫02π121(10123−1)dθ=121(101101−1)∫02πdθ=121(101101−1)⋅θ∣02π=121(101101−1)⋅2π=6π(101101−1)
Comments