"\\displaystyle\n\n\n\\textsf{The area of a surface,}\\,z, \\, \\textsf{above}\\\\\\textsf{a region}\\,R\\, \\textsf{of the Cartesian}\\\\\n\\textsf{plane is given by}\\\\\n\nS = \\iint_R \\sqrt{\\left(\\frac{\\partial z}{\\partial x}\\right)^2 + \\left(\\frac{\\partial z}{\\partial y}\\right)^2 + 1}\\, \\mathrm{d}A\\\\\n\nz = x^2 + y^2, \\frac{\\partial z}{\\partial x} = 2x, \\frac{\\partial z}{\\partial y} = 2y\\\\\n\n\\textsf{The surface area over the region}\\\\\n\\textsf{defined by}\\, x^2 + y^2 = 25\\, \\textsf{is given by}\\\\\n\nS = \\iint_R \\sqrt{1 + 4x^2 + 4y^2}\\, \\mathrm{d}x\\,\\mathrm{d}y\\\\\n\n\\textsf{Converting to Polar coordinates}\\\\\n\n\\begin{aligned}\nS &= \\iint_R \\sqrt{1 + 4x^2 + 4y^2}\\, \\mathrm{d}x\\,\\mathrm{d}y\\\\\n&= \\int_0^{2\\pi}\\int_0^5\\sqrt{1 + 4(r\\cos\\theta)^2 + 4(r\\sin\\theta)^2}\\, r\\mathrm{d}r\\mathrm{d}\\theta \\\\\n&= \\int_0^{2\\pi}\\int_0^5\\sqrt{1 + 4r^2(\\cos^2\\theta + \\sin^2\\theta})\\, r\\mathrm{d}r\\mathrm{d}\\theta \\\\\n&= \\int_0^{2\\pi}\\int_0^5\\sqrt{1 + 4r^2}\\, r\\mathrm{d}r\\mathrm{d}\\theta \\\\\n&= \\int_0^{2\\pi}\\frac{1}{12}(1 + 4r^2)^{\\frac{3}{2}}\\biggr\\vert_0^5 \\,\\mathrm{d}\\theta \\\\\n&= \\int_0^{2\\pi}\\frac{1}{12}\\left(101^{\\frac{3}{2}} - 1\\right)\\, \\mathrm{d}\\theta\\\\\n&= \\frac{1}{12}\\left(101\\sqrt{101} - 1\\right)\\int_0^{2\\pi}\\mathrm{d}\\theta \\\\\n&= \\frac{1}{12}\\left(101\\sqrt{101} - 1\\right)\\cdot\\theta\\vert_0^{2\\pi} = \\frac{1}{12}\\left(101\\sqrt{101} - 1\\right)\\cdot 2\\pi \\\\\n&= \\frac{\\pi}{6}\\left(101\\sqrt{101} - 1\\right)\n\\end{aligned}"
Comments
Leave a comment