2020-11-02T20:01:44-05:00
Evaluate ∫∫∫B f(x,y,z) dV for the specified function f and B:
f(x,y,z)=(z/x) 3≤x≤6,0≤y≤4,0≤z≤2
1
2020-11-09T19:55:01-0500
∫ 3 6 ∫ 0 4 ∫ 0 2 z x d z d y d x = \displaystyle\int_{3}^6\displaystyle\int_{0}^4\displaystyle\int_{0}^2\dfrac{z}{x}dzdydx= ∫ 3 6 ∫ 0 4 ∫ 0 2 x z d z d y d x =
= ∫ 3 6 ∫ 0 4 1 x [ z 2 2 ] [ 2 0 ] d y d x = =\displaystyle\int_{3}^6\displaystyle\int_{0}^4\dfrac{1}{x}\bigg[\dfrac{z^2}{2}\bigg]{2\brack 0}dydx= = ∫ 3 6 ∫ 0 4 x 1 [ 2 z 2 ] [ 0 2 ] d y d x =
= ∫ 3 6 ∫ 0 4 2 x d y d x = =\displaystyle\int_{3}^6\displaystyle\int_{0}^4\dfrac{2}{x}dydx= = ∫ 3 6 ∫ 0 4 x 2 d y d x =
= ∫ 3 6 2 x [ y ] [ 4 0 ] d x = =\displaystyle\int_{3}^6\dfrac{2}{x}\bigg[y\bigg]{4\brack 0}dx= = ∫ 3 6 x 2 [ y ] [ 0 4 ] d x =
= ∫ 3 6 8 x d x = =\displaystyle\int_{3}^6\dfrac{8}{x}dx= = ∫ 3 6 x 8 d x =
= [ 8 ln ( ∣ x ∣ ) ] [ 8 3 ] = 8 ( ln 6 − ln 3 ) = 8 ln 2 =\bigg[8\ln(|x|)\bigg]{8\brack 3}=8(\ln6-\ln3)=8\ln2 = [ 8 ln ( ∣ x ∣ ) ] [ 3 8 ] = 8 ( ln 6 − ln 3 ) = 8 ln 2
∫ 3 6 ∫ 0 4 ∫ 0 2 z x d z d y d x = 8 ln 2 \displaystyle\int_{3}^6\displaystyle\int_{0}^4\displaystyle\int_{0}^2\dfrac{z}{x}dzdydx=8\ln2 ∫ 3 6 ∫ 0 4 ∫ 0 2 x z d z d y d x = 8 ln 2
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments