∫01∫x5x∫0y5xyzdzdydx\int_0^1 \int_x^{5x} \int_0^y 5xyz dzdydx∫01∫x5x∫0y5xyzdzdydx
Go from inside to outside
1.∫0y5xyzdz=5xy[z2/2]0y=5/2xy31. \int_{0}^{y} 5xyz dz = 5xy\Big[z^2/2\Big]_0^y = 5/2xy^31.∫0y5xyzdz=5xy[z2/2]0y=5/2xy3
2.∫x5x5/2xy3dy=5/2x[y4/4]x5x=5/2x(625x4/4−x4/4)=390x52. \int_{x}^{5x} 5/2xy^3 dy = 5/2 x\Big[y^4/4\Big]_x^{5x} = 5/2x(625x^4/4 - x^4/4) = 390x^52.∫x5x5/2xy3dy=5/2x[y4/4]x5x=5/2x(625x4/4−x4/4)=390x5
3.∫01390x5dx=390x6/6∣01=653. \int_0^1 390x^5 dx = 390x^6/6\Big|_0^1 = 653.∫01390x5dx=390x6/6∣∣01=65
Answer: ∫01∫x5x∫0y5xyzdzdydx=65\int_0^1 \int_x^{5x} \int_0^y 5xyz dzdydx = 65∫01∫x5x∫0y5xyzdzdydx=65
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments