Question #136790
Find the equation of the plane that passes through the point (2,1,−6) and is tangent to the surface
x^2+4y^3+3z^2=116
at (2,1,−6). Write it in the form indicated below.

Equation: 4(x−2)+___(y−___)+___(z−___)=0
1
Expert's answer
2020-10-12T16:50:23-0400

First we rearrange the equation ofthe surface into the formf(x,y,z)=0f(x,y,z)=x2+4y3+3z2116In order to find the normal atany particular point in vectorspace we use the Del, or gradient operator:Δ(x,y,z)=fxi+fyj+fzkfx=2x,fy=12y2,fz=6zΔ(x,y,z)=2xi+12y2j+6zkSo for the particular point.(2,1,6),the normal vectorto the surfaceis given by:(a,b,c)=Δ(2,1,6)=4i+12j36kSo the tangent plane to the surfacex2+4y3+3z2=116has this normal vector and it alsopasses though the point(2,1,6).It will therefore have avector equation of the form:ax+by+cz=ax0+by0+cz0a(xx0)+b(yy0)+c(zz0)=0    4(x2)+12(y1)36(z+6)=0\displaystyle\textsf{First we rearrange the equation of}\\\textsf{the surface into the form}\, f(x, y, z) = 0\\ f(x, y, z) = x^2+4y^3+3z^2 - 116\\ \textsf{In order to find the normal at}\\\textsf{any particular point in vector}\\\textsf{space we use the Del, or gradient operator:}\\ \Delta(x, y, z) = \frac{\partial f}{\partial x} i + \frac{\partial f}{\partial y} j + \frac{\partial f}{\partial z}k\\ \frac{\partial f}{\partial x} = 2x, \, \frac{\partial f}{\partial y} = 12y^2, \,\frac{\partial f}{\partial z} = 6z\\ \therefore\Delta (x, y, z) = 2x i + 12y^2 j + 6z k\\ \textsf{So for the particular point.}\, (2,1,−6),\,\\\textsf{the normal vectorto the surface}\\\textsf{is given by:}\\ (a, b, c) = \Delta(2,1,−6) = 4i + 12j - 36k\\ \textsf{So the tangent plane to the surface}\\ x^2+4y^3+3z^2 = 116\\ \textsf{has this normal vector and it also}\\\textsf{passes though the point}\, (2, 1, -6). \\\textsf{It will therefore have a}\\\textsf{vector equation of the form:}\\ ax + by + cz = ax_0 + by_0 + cz_0\\ \therefore a(x - x_0) + b(y - y_0) + c(z - z_0) = 0 \\ \implies 4(x - 2) + 12(y - 1) - 36(z + 6) = 0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS