First we rearrange the equation ofthe surface into the formf(x,y,z)=0f(x,y,z)=x2+4y3+3z2−116In order to find the normal atany particular point in vectorspace we use the Del, or gradient operator:Δ(x,y,z)=∂x∂fi+∂y∂fj+∂z∂fk∂x∂f=2x,∂y∂f=12y2,∂z∂f=6z∴Δ(x,y,z)=2xi+12y2j+6zkSo for the particular point.(2,1,−6),the normal vectorto the surfaceis given by:(a,b,c)=Δ(2,1,−6)=4i+12j−36kSo the tangent plane to the surfacex2+4y3+3z2=116has this normal vector and it alsopasses though the point(2,1,−6).It will therefore have avector equation of the form:ax+by+cz=ax0+by0+cz0∴a(x−x0)+b(y−y0)+c(z−z0)=0⟹4(x−2)+12(y−1)−36(z+6)=0
Comments