"\\displaystyle z=x^2\\sin y, x=\u22124s^2+t^2, y=\u22122st.\\\\\n\nA. \\\\\\textsf{By Chain rule or composite rule of differentiation,}\\\\\n\n\\frac{\\partial z}{\\partial s} = \\frac{\\partial z}{\\partial x}\\times \\frac{\\partial x}{\\partial s}\\\\\n\n\n\\frac{\\partial z}{\\partial x} = 2x\\sin{y}\\, \\frac{\\partial x}{\\partial s} = -8s\\\\\n\n\\therefore \\frac{\\partial z}{\\partial x} = -16xs\\sin{y} \\\\\n\nB.\\\\ \\begin{aligned}\n\\frac{\\partial z}{\\partial t} &= \\frac{\\partial z}{\\partial x} \\times \\frac{\\partial x}{\\partial t} \\\\&= -16xs\\sin{y} \\times 2t = -32xst\\sin{y}\n\\end{aligned}\\\\\n\n\n\\textsf{At}\\, (s, t) = (-5, -5)\\\\\n\ny = (-2)(-5)(-5) = -50\\\\\n\nx = -4(-5)^2 + (-5)^2 = -100 + 25 = -75\\\\\n\n\\therefore \\frac{\\partial z}{\\partial x} = -16(-75)(-5)\\sin{(-50)} = 6000\\sin(50) = -1574.249\\,\\&\\\\\n\n\\frac{\\partial z}{\\partial t} = 2(-5)\\times 6000\\sin(50) = -60000\\sin(50)=15742.49"
Comments
Leave a comment