Question #136785
Suppose z=x^2siny, x=−4s^2+t^2, y=−2st.

A. Use the chain rule to find ∂z/∂s and ∂z/∂t as functions of x, y, s and t.
∂z/∂s=

∂z/∂t=

B. Find the numerical values of ∂z/∂s and ∂z/∂t when (s,t)=(−5,−5).
∂z/∂s(−5,−5)=

∂z/∂t(−5,−5)=
1
Expert's answer
2020-10-13T19:17:02-0400

z=x2siny,x=4s2+t2,y=2st.A.By Chain rule or composite rule of differentiation,zs=zx×xszx=2xsinyxs=8szx=16xssinyB.zt=zx×xt=16xssiny×2t=32xstsinyAt(s,t)=(5,5)y=(2)(5)(5)=50x=4(5)2+(5)2=100+25=75zx=16(75)(5)sin(50)=6000sin(50)=1574.249&zt=2(5)×6000sin(50)=60000sin(50)=15742.49\displaystyle z=x^2\sin y, x=−4s^2+t^2, y=−2st.\\ A. \\\textsf{By Chain rule or composite rule of differentiation,}\\ \frac{\partial z}{\partial s} = \frac{\partial z}{\partial x}\times \frac{\partial x}{\partial s}\\ \frac{\partial z}{\partial x} = 2x\sin{y}\, \frac{\partial x}{\partial s} = -8s\\ \therefore \frac{\partial z}{\partial x} = -16xs\sin{y} \\ B.\\ \begin{aligned} \frac{\partial z}{\partial t} &= \frac{\partial z}{\partial x} \times \frac{\partial x}{\partial t} \\&= -16xs\sin{y} \times 2t = -32xst\sin{y} \end{aligned}\\ \textsf{At}\, (s, t) = (-5, -5)\\ y = (-2)(-5)(-5) = -50\\ x = -4(-5)^2 + (-5)^2 = -100 + 25 = -75\\ \therefore \frac{\partial z}{\partial x} = -16(-75)(-5)\sin{(-50)} = 6000\sin(50) = -1574.249\,\&\\ \frac{\partial z}{\partial t} = 2(-5)\times 6000\sin(50) = -60000\sin(50)=15742.49


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS