Question #136786
Use the chain rule to find dzdt, where
z=x^2y+xy^2,x=−4+t^2,y=5−t^7

First the pieces:

∂z/∂x=

∂z/∂y=

dx/dt=

dy/dt=


End result (in terms of just t):
dz/dt=
1
Expert's answer
2020-10-09T13:37:33-0400

z=x2y+xy2,x=4+t2,y=5t7zx=2xy+y2,zy=x2+2xydxdt=2t,dydt=7t6dzdt=zxdxdt+zydydtdzdt=(2xy+y2).2t+(2xy+x2).(7t6)=(2xy+y2).2t+(2xy+x2).(7t6)=4xyt+2y2t14t6xy7x2t6=4(5t7)(4+t2)t+2(5t7)2t14t6(5t7)(4+t2)7(4+t2)2t6=2(5t7)2t+2(5t7)(4+t2)(2t7t6)7(4+t2)2t6z=x^2y+xy^2, x=−4+t^2, y=5−t^7\\ \displaystyle\frac{\partial z}{\partial x} = 2xy + y^2, \frac{\partial z}{\partial y} = x^2 + 2xy\\ \frac{\mathrm{d}x}{\mathrm{d}t} = 2t, \frac{\mathrm{d}y}{\mathrm{d}t} = -7t^6\\ \frac{\mathrm{d}z}{\mathrm{d}t} = \frac{\partial z}{\partial x} \cdot \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial z}{\partial y} \cdot\frac{\mathrm{d}y}{\mathrm{d}t}\\ \begin{aligned} \frac{\mathrm{d}z}{\mathrm{d}t} &= (2xy + y^2).2t + (2xy + x^2).(-7t^6) \\&= (2xy + y^2).2t + (2xy + x^2).(-7t^6) \\&= 4xyt + 2y^2t - 14t^6xy - 7x^2 t^6 \\&=4(5−t^7)(−4+t^2)t + 2(5−t^7)^2 t -\\& 14t^6(5−t^7)(−4+t^2) - 7(-4+t^2)^2 t^6 \\&= 2(5−t^7)^2 t + 2(5−t^7)(−4+t^2)(2t - 7t^6) - \\&7(-4+t^2)^2 t^6 \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS