"z=x^2y+xy^2, x=\u22124+t^2, y=5\u2212t^7\\\\\n\n\\displaystyle\\frac{\\partial z}{\\partial x} = 2xy + y^2, \\frac{\\partial z}{\\partial y} = x^2 + 2xy\\\\\n\n\\frac{\\mathrm{d}x}{\\mathrm{d}t} = 2t, \\frac{\\mathrm{d}y}{\\mathrm{d}t} = -7t^6\\\\\n\n\n\n\\frac{\\mathrm{d}z}{\\mathrm{d}t} = \\frac{\\partial z}{\\partial x} \\cdot \\frac{\\mathrm{d}x}{\\mathrm{d}t} + \\frac{\\partial z}{\\partial y} \\cdot\\frac{\\mathrm{d}y}{\\mathrm{d}t}\\\\\n\n\n\\begin{aligned}\n\\frac{\\mathrm{d}z}{\\mathrm{d}t} &= (2xy + y^2).2t + (2xy + x^2).(-7t^6) \\\\&= (2xy + y^2).2t + (2xy + x^2).(-7t^6) \\\\&= 4xyt + 2y^2t - 14t^6xy - 7x^2 t^6\n\\\\&=4(5\u2212t^7)(\u22124+t^2)t + 2(5\u2212t^7)^2 t -\\\\& 14t^6(5\u2212t^7)(\u22124+t^2) - 7(-4+t^2)^2 t^6 \\\\&= 2(5\u2212t^7)^2 t + 2(5\u2212t^7)(\u22124+t^2)(2t - 7t^6) - \\\\&7(-4+t^2)^2 t^6\n\\end{aligned}"
Comments
Leave a comment