We have x−4arctan(yz)−z=0 and point (1+π,1,1).
The equation is Fx′(x0,y0,z0)(x−x0)+Fy′(x0,y0,z0)(y−y0)+Fz′(x0,y0,z0)(z−z0)=0.
Fx′=1, Fx′(1+π,1,1)=1.
Fy′=−4y2z2+11z=y2z2+1−4z, Fy′(1+π,1,1)=2−4=−2.
Fz′=−4y2z2+11y−1=y2z2+1−4y−1, Fz′(1+π,1,1)=2−4−1=−3.
So, 1(x−1−π)−2(y−1)−3(z−1)=0,
x−1−π−2y+2−3z+3=0,
x−2y−3z+4−π=0.
Answer: x−2y−3z+4−π=0.
Comments