Question #136779
Find the equation for the tangent plane to the surface x-z= 4 arctan(yz) at the point (1 +pi,1,1).
1
Expert's answer
2020-10-05T18:20:34-0400

We have x4arctan(yz)z=0x-4arctan(yz)-z=0 and point (1+π,1,1).(1+\pi, 1, 1).

The equation is Fx(x0,y0,z0)(xx0)+Fy(x0,y0,z0)(yy0)+Fz(x0,y0,z0)(zz0)=0.F_{x}^{'}(x_0, y_0, z_0)(x-x_0)+F_{y}^{'}(x_0, y_0, z_0)(y-y_0)+F_{z}^{'}(x_0, y_0, z_0)(z-z_0)=0.

Fx=1F_{x}^{'}=1, Fx(1+π,1,1)=1.F_{x}^{'}(1+\pi, 1, 1)=1.

Fy=41y2z2+1z=4zy2z2+1F_{y}^{'}=-4\frac{1}{y^2z^2+1}z=\frac{-4z}{y^2z^2+1}, Fy(1+π,1,1)=42=2F_{y}^{'}(1+\pi, 1, 1)=\frac{-4}{2}=-2.

Fz=41y2z2+1y1=4yy2z2+11F_{z}^{'}=-4\frac{1}{y^2z^2+1}y-1=\frac{-4y}{y^2z^2+1}-1, Fz(1+π,1,1)=421=3F_{z}^{'}(1+\pi, 1, 1)=\frac{-4}{2}-1=-3.

So, 1(x1π)2(y1)3(z1)=01(x-1-\pi)-2(y-1)-3(z-1)=0,

x1π2y+23z+3=0x-1-\pi-2y+2-3z+3=0,

x2y3z+4π=0x-2y-3z+4-\pi=0.


Answer: x2y3z+4π=0.x-2y-3z+4-\pi=0.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS