We have "x-4arctan(yz)-z=0" and point "(1+\\pi, 1, 1)."
The equation is "F_{x}^{'}(x_0, y_0, z_0)(x-x_0)+F_{y}^{'}(x_0, y_0, z_0)(y-y_0)+F_{z}^{'}(x_0, y_0, z_0)(z-z_0)=0."
"F_{x}^{'}=1", "F_{x}^{'}(1+\\pi, 1, 1)=1."
"F_{y}^{'}=-4\\frac{1}{y^2z^2+1}z=\\frac{-4z}{y^2z^2+1}", "F_{y}^{'}(1+\\pi, 1, 1)=\\frac{-4}{2}=-2".
"F_{z}^{'}=-4\\frac{1}{y^2z^2+1}y-1=\\frac{-4y}{y^2z^2+1}-1", "F_{z}^{'}(1+\\pi, 1, 1)=\\frac{-4}{2}-1=-3".
So, "1(x-1-\\pi)-2(y-1)-3(z-1)=0",
"x-1-\\pi-2y+2-3z+3=0",
"x-2y-3z+4-\\pi=0".
Answer: "x-2y-3z+4-\\pi=0."
Comments
Leave a comment