The rough diagram of the question is given below
the perimeter of the window is given as 20 units.
Radius of the semicircle will be half of the length of AB.
i.e. radius = x/2 units
"Perimeter =AB + BC+ AD+ length \\space of \\space the \\space arc \\space CD\\\\or, x+y+y+ \\frac{\\pi x }{2}=20\\\\or, x+2y+\\frac{\\pi x }{2}=20\\\\or,2y=20-(x+\\frac{\\pi x }{2})\\\\or, y= \\frac {20-(x+\\frac{\\pi x }{2})}{2}\\\\or, y= 10- \\frac{x}{2}-\\frac{\\pi x }{4}"
Now Area of the window is given by
"A =" area of rectangle ABCD + area of semicircle surmounted on CD
"or, A = xy + \\frac{1}{2}*\\pi*(\\frac{x}{2})^2\\\\or, A = xy+\\frac{\\pi x^2}{8}\\\\or, A= x* (10- \\frac{x}{2}-\\frac{\\pi x }{4}) + \\frac{\\pi x^2}{8}\\\\or, A = 10x-\\frac{x^2}{2}-\\frac{\\pi x^2}{4}+\\frac{\\pi x^2}{8}\\\\or, A = 10x-\\frac{x^2}{2}-\\frac{\\pi x^2}{8}"
Therefore mathemtical model of the area in terms of x is given by
"A = 10x-\\frac{x^2}{2}-\\frac{\\pi x^2}{8} \\space \\space \\space \\space (ANSWER)"
Comments
Leave a comment