Use integration by parts:
∫u dv=uv−∫v du\int u\:dv=uv-\int v\:du∫udv=uv−∫vdu
In this task u=xu=xu=x and cos(x)dx=dv=>du=dx,v=sin(x)\cos(x)dx=dv =>du=dx, v=\sin(x)cos(x)dx=dv=>du=dx,v=sin(x). So the answer is
∫xcos(x) dx=xsin(x)−∫sin(x) dx=xsin(x)+cos(x)+const\int x\cos(x)\:dx=x\sin(x)-\int \sin(x)\:dx=x\sin(x)+\cos(x)+const∫xcos(x)dx=xsin(x)−∫sin(x)dx=xsin(x)+cos(x)+const
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments