"I=\\int \\:\\frac{x+\\sin x}{1+\\cos x}dx={\\displaystyle\\int}\\left(\\dfrac{\\sin\\left(x\\right)}{\\cos\\left(x\\right)+1}+\\dfrac{x}{\\cos\\left(x\\right)+1}\\right)\\mathrm{d}x" Thus,
Applying linearity we get,
"I={\\displaystyle\\int}\\dfrac{\\sin\\left(x\\right)}{\\cos\\left(x\\right)+1}\\,\\mathrm{d}x+{\\displaystyle\\int}\\dfrac{x}{\\cos\\left(x\\right)+1}\\,\\mathrm{d}x" Now, consider
"I_1={\\displaystyle\\int}\\dfrac{\\sin\\left(x\\right)}{\\cos\\left(x\\right)+1}\\,\\mathrm{d}x" Let,
"u=1+\\cos x\\implies \\sin x dx =-du" , hence
"I_1=-{\\displaystyle\\int}\\dfrac{1}{u}\\,\\mathrm{d}u=-\\ln u=-\\ln (1+\\cos x)+c_1"
Consider,
"I_2={\\displaystyle\\int}\\dfrac{x}{\\cos\\left(x\\right)+1}\\,\\mathrm{d}x" Thus, after rewriting the above integrand we get
"I_2={\\displaystyle\\int}\\dfrac{x\\csc\\left(x\\right)}{\\csc\\left(x\\right)+\\cot\\left(x\\right)}\\,\\mathrm{d}x"
Now, integrate by parts, take "f=x" , "g'=\\dfrac{\\csc\\left(x\\right)}{\\csc\\left(x\\right)+\\cot\\left(x\\right)}"
And apply
"{\\int}\\mathtt{f}\\mathtt{g}' = \\mathtt{f}\\mathtt{g} - {\\int}\\mathtt{f}'\\mathtt{g}" Thus, "f'=1" and
"g={\\displaystyle\\int}\\dfrac{\\csc\\left(x\\right)}{\\csc\\left(x\\right)+\\cot\\left(x\\right)}\\,\\mathrm{d}x\\\\" Now, substitute "u=\\dfrac{1}{\\csc\\left(x\\right)+\\cot\\left(x\\right)}" ,hence "\\mathrm{d}x=-\\dfrac{\\left(\\csc\\left(x\\right)+\\cot\\left(x\\right)\\right)^2}{-\\csc^2\\left(x\\right)-\\cot\\left(x\\right)\\csc\\left(x\\right)}\\,\\mathrm{d}u"
Therefore,
"g=\\int du=u\\implies g=\\dfrac{1}{\\csc\\left(x\\right)+\\cot\\left(x\\right)}" Hence,
"I_2=\\dfrac{x}{\\csc\\left(x\\right)+\\cot\\left(x\\right)}-{\\displaystyle\\int}\\dfrac{1}{\\csc\\left(x\\right)+\\cot\\left(x\\right)}\\,\\mathrm{d}x" Now, consider
"I_3={\\displaystyle\\int}\\dfrac{1}{\\csc\\left(x\\right)+\\cot\\left(x\\right)}\\,\\mathrm{d}x" After simplification of "I_3" we get
"I_3=-{\\displaystyle\\int}-\\dfrac{1}{\\cos\\left(x\\right)+1}{\\sin x} dx" Take
"v=1+\\cos x\\implies -\\sin xdx=dv" Hence,
"I_3=-\\int \\frac{1}{v}dv=-\\ln v=-\\ln(1+\\cos x)+c_2"
Thus,
"I_2=\\dfrac{x}{\\csc\\left(x\\right)+\\cot\\left(x\\right)}-I_3\\\\\n\\implies I_2=\\dfrac{x}{\\csc\\left(x\\right)+\\cot\\left(x\\right)}+\\ln (1+\\cos x)+c_2" Therefore,
"I=I_1+I_2\\implies I=\\dfrac{x}{\\csc\\left(x\\right)+\\cot\\left(x\\right)}+c" Where, constant "c=c_1+c_2"
Comments
Leave a comment