Answer to Question #136211 in Calculus for qwerty

Question #136211
\int \:\frac{x+sinx}{1+cosx}dx
1
Expert's answer
2020-10-11T18:04:26-0400
I=x+sinx1+cosxdx=(sin(x)cos(x)+1+xcos(x)+1)dxI=\int \:\frac{x+\sin x}{1+\cos x}dx={\displaystyle\int}\left(\dfrac{\sin\left(x\right)}{\cos\left(x\right)+1}+\dfrac{x}{\cos\left(x\right)+1}\right)\mathrm{d}x

Thus,

Applying linearity we get,


I=sin(x)cos(x)+1dx+xcos(x)+1dxI={\displaystyle\int}\dfrac{\sin\left(x\right)}{\cos\left(x\right)+1}\,\mathrm{d}x+{\displaystyle\int}\dfrac{x}{\cos\left(x\right)+1}\,\mathrm{d}x

Now, consider


I1=sin(x)cos(x)+1dxI_1={\displaystyle\int}\dfrac{\sin\left(x\right)}{\cos\left(x\right)+1}\,\mathrm{d}x

Let,


u=1+cosx    sinxdx=duu=1+\cos x\implies \sin x dx =-du

, hence


I1=1udu=lnu=ln(1+cosx)+c1I_1=-{\displaystyle\int}\dfrac{1}{u}\,\mathrm{d}u=-\ln u=-\ln (1+\cos x)+c_1

Consider,


I2=xcos(x)+1dxI_2={\displaystyle\int}\dfrac{x}{\cos\left(x\right)+1}\,\mathrm{d}x

Thus, after rewriting the above integrand we get


I2=xcsc(x)csc(x)+cot(x)dxI_2={\displaystyle\int}\dfrac{x\csc\left(x\right)}{\csc\left(x\right)+\cot\left(x\right)}\,\mathrm{d}x

Now, integrate by parts, take f=xf=x , g=csc(x)csc(x)+cot(x)g'=\dfrac{\csc\left(x\right)}{\csc\left(x\right)+\cot\left(x\right)}

And apply

fg=fgfg{\int}\mathtt{f}\mathtt{g}' = \mathtt{f}\mathtt{g} - {\int}\mathtt{f}'\mathtt{g}

Thus, f=1f'=1 and


g=csc(x)csc(x)+cot(x)dxg={\displaystyle\int}\dfrac{\csc\left(x\right)}{\csc\left(x\right)+\cot\left(x\right)}\,\mathrm{d}x\\

Now, substitute u=1csc(x)+cot(x)u=\dfrac{1}{\csc\left(x\right)+\cot\left(x\right)} ,hence dx=(csc(x)+cot(x))2csc2(x)cot(x)csc(x)du\mathrm{d}x=-\dfrac{\left(\csc\left(x\right)+\cot\left(x\right)\right)^2}{-\csc^2\left(x\right)-\cot\left(x\right)\csc\left(x\right)}\,\mathrm{d}u

Therefore,


g=du=u    g=1csc(x)+cot(x)g=\int du=u\implies g=\dfrac{1}{\csc\left(x\right)+\cot\left(x\right)}

Hence,


I2=xcsc(x)+cot(x)1csc(x)+cot(x)dxI_2=\dfrac{x}{\csc\left(x\right)+\cot\left(x\right)}-{\displaystyle\int}\dfrac{1}{\csc\left(x\right)+\cot\left(x\right)}\,\mathrm{d}x

Now, consider


I3=1csc(x)+cot(x)dxI_3={\displaystyle\int}\dfrac{1}{\csc\left(x\right)+\cot\left(x\right)}\,\mathrm{d}x

After simplification of I3I_3 we get


I3=1cos(x)+1sinxdxI_3=-{\displaystyle\int}-\dfrac{1}{\cos\left(x\right)+1}{\sin x} dx

Take

v=1+cosx    sinxdx=dvv=1+\cos x\implies -\sin xdx=dv

Hence,


I3=1vdv=lnv=ln(1+cosx)+c2I_3=-\int \frac{1}{v}dv=-\ln v=-\ln(1+\cos x)+c_2



Thus,

I2=xcsc(x)+cot(x)I3    I2=xcsc(x)+cot(x)+ln(1+cosx)+c2I_2=\dfrac{x}{\csc\left(x\right)+\cot\left(x\right)}-I_3\\ \implies I_2=\dfrac{x}{\csc\left(x\right)+\cot\left(x\right)}+\ln (1+\cos x)+c_2

Therefore,


I=I1+I2    I=xcsc(x)+cot(x)+cI=I_1+I_2\implies I=\dfrac{x}{\csc\left(x\right)+\cot\left(x\right)}+c

Where, constant c=c1+c2c=c_1+c_2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment