I=∫1+cosxx+sinxdx=∫(cos(x)+1sin(x)+cos(x)+1x)dx Thus,
Applying linearity we get,
I=∫cos(x)+1sin(x)dx+∫cos(x)+1xdx Now, consider
I1=∫cos(x)+1sin(x)dx Let,
u=1+cosx⟹sinxdx=−du , hence
I1=−∫u1du=−lnu=−ln(1+cosx)+c1
Consider,
I2=∫cos(x)+1xdx Thus, after rewriting the above integrand we get
I2=∫csc(x)+cot(x)xcsc(x)dx
Now, integrate by parts, take f=x , g′=csc(x)+cot(x)csc(x)
And apply
∫fg′=fg−∫f′g Thus, f′=1 and
g=∫csc(x)+cot(x)csc(x)dx Now, substitute u=csc(x)+cot(x)1 ,hence dx=−−csc2(x)−cot(x)csc(x)(csc(x)+cot(x))2du
Therefore,
g=∫du=u⟹g=csc(x)+cot(x)1 Hence,
I2=csc(x)+cot(x)x−∫csc(x)+cot(x)1dx Now, consider
I3=∫csc(x)+cot(x)1dx After simplification of I3 we get
I3=−∫−cos(x)+11sinxdx Take
v=1+cosx⟹−sinxdx=dv Hence,
I3=−∫v1dv=−lnv=−ln(1+cosx)+c2
Thus,
I2=csc(x)+cot(x)x−I3⟹I2=csc(x)+cot(x)x+ln(1+cosx)+c2 Therefore,
I=I1+I2⟹I=csc(x)+cot(x)x+c Where, constant c=c1+c2
Comments
Leave a comment