"\\int \\left(x^3+1\\right)^5x^2dx"
Here, we apply substitution method I.e.
Let "u = x^3 + 1"
"\\implies \\frac{du}{dx} = 3x^2"
"\\implies dx= \\frac{1}{3x^2}du"
Replacing back, we have;
"\\int (u)^5 \\cancel{x^2} \\frac{1}{3 \\cancel{x^2} }du" "= \\frac{1}{3} \\int u^5 du"
Now we solve;
"\\int u^5 du"
Here, we apply power rule;
Where we let;
"\\int u^n du = \\frac{u^{n+1}}{n+1}" With "n = 5" , we have;
"= \\frac{u^6}{6}"
Replacing this back to "\\frac{1}{3} \\int u^5 du" we have;
"\\frac{u^6}{18}"
Now we undo the substitution
"u = x^3 +1"
"\\frac{(x^3 +1)^6}{18}" and we add a C to this, hence the final answer i.e.
"\\frac{(x^3 +1)^6}{18} + C"
Comments
Leave a comment