∫(x13+x−13)4dx=∫(x43+4∗x23+6+4∗x−23+x−43)dx=∫x43dx+∫4∗x23dx+∫6dx+∫4∗x−23dx+∫x−43dx=37∗x73+125∗x53+6∗x+12∗x13−3∗x−13+C\int \left(x^{\frac{1}{3}}+x^{\frac{-1}{3}}\right)^4dx=\int (x^{\frac{4}{3}}+4*x^{\frac{2}{3}}+6+4*x^{\frac{-2}{3}}+x^{\frac{-4}{3}})dx=\int x^{\frac{4}{3}}dx+\int4*x^{\frac{2}{3}}dx+\int6dx+\int4*x^{\frac{-2}{3}}dx+\int x^{\frac{-4}{3}}dx=\frac{3}{7}*x^{\frac{7}{3}}+\frac{12}{5}*x^{\frac{5}{3}}+6*x+12*x^{\frac{1}{3}}-3*x^{\frac{-1}{3}}+C∫(x31+x3−1)4dx=∫(x34+4∗x32+6+4∗x3−2+x3−4)dx=∫x34dx+∫4∗x32dx+∫6dx+∫4∗x3−2dx+∫x3−4dx=73∗x37+512∗x35+6∗x+12∗x31−3∗x3−1+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments