"\\int \\left(x^{\\frac{2}{3}}-\\frac{1}{x^{\\frac{2}{3}}}+\\frac{2}{x^5}-2x\\right)dx=\\int x^{\\frac{2}{3}}dx-\\int x^{-\\frac{2}{3}}dx+2\\int x^{-5}dx-2\\int x^1dx="
"=\\frac{x^{{\\frac{2}{3}}+1}}{\\frac{2}{3}+1} -\\frac{x^{-{\\frac{2}{3}}+1}}{-\\frac{2}{3}+1} +2\\frac{x^{-5+1}}{-5+1} -2\\frac{x^{1+1}}{1+1}+C="
"=\\frac{3x^{\\frac{5}{3}}}{5}-3x^{\\frac{1}{3}}+2\\frac{x^{-4}}{-4}-2\\frac{x^2}{2}+C="
"=\\frac{3}{5}{x^{\\frac{5}{3}}}-3\\sqrt[3]{x}-\\frac{1}{2x^4}-x^2+C".
Answer: "\\frac{3}{5}{x^{\\frac{5}{3}}}-3\\sqrt[3]{x}-\\frac{1}{2x^4}-x^2+C".
Comments
Leave a comment