Let "O=AC\\cap BD", "M\\in AB, AM=MB, N\\in CD, CN=ND."
Then "OM=ON=x, MN=AD=2x, AM=MB=x, \\medspace x\\in (0, \\frac{5}{2})."
"MS+SN=5, so\\medspace MS=SN=\\frac{5}{2}."
"\\triangle SMO\\medspace (\\angle SOM=90^\\circ): SO=\\sqrt{MS^2-OM^2}=\\sqrt{\\left( \\frac{5}{2}\\right )^2-x^2}=\\sqrt{ \\frac{25}{4}-x^2}."
"V_{SABCD}(x)=\\frac{1}{3}AD^2\\cdot SO=\\frac{1}{3}\\cdot(2x)^2\\cdot\\sqrt{ \\frac{25}{4}-x^2}=\\frac{1}{3}\\cdot4x^2 \\frac{\\sqrt{25-4x^2}}{2}=\\frac{2}{3}x^2\\sqrt{25-4x^2}."
Answer: "V(x)=\\frac{2}{3}x^2\\sqrt{25-4x^2}, \\medspace x\\in (0, \\frac{5}{2})."
Comments
Leave a comment