Answer to Question #135995 in Calculus for Sean

Question #135995
A tent in the shape of a pyramid with a square base is to be constructed from a piece of material having
a side of length 5 meters. In the base of the pyramid, let x be the distance from the center to a side (see
figure below). Find a mathematical model expressing the volume of the tent as a function of x.
(The volume of a pyramid is V = Bh, where V, B and h are the volume, base area and height
of the pyramid respectively).
1
Expert's answer
2020-10-05T17:58:13-0400



Let O=ACBDO=AC\cap BD, MAB,AM=MB,NCD,CN=ND.M\in AB, AM=MB, N\in CD, CN=ND.

Then OM=ON=x,MN=AD=2x,AM=MB=x,x(0,52).OM=ON=x, MN=AD=2x, AM=MB=x, \medspace x\in (0, \frac{5}{2}).

MS+SN=5,soMS=SN=52.MS+SN=5, so\medspace MS=SN=\frac{5}{2}.

SMO(SOM=90):SO=MS2OM2=(52)2x2=254x2.\triangle SMO\medspace (\angle SOM=90^\circ): SO=\sqrt{MS^2-OM^2}=\sqrt{\left( \frac{5}{2}\right )^2-x^2}=\sqrt{ \frac{25}{4}-x^2}.

VSABCD(x)=13AD2SO=13(2x)2254x2=134x2254x22=23x2254x2.V_{SABCD}(x)=\frac{1}{3}AD^2\cdot SO=\frac{1}{3}\cdot(2x)^2\cdot\sqrt{ \frac{25}{4}-x^2}=\frac{1}{3}\cdot4x^2 \frac{\sqrt{25-4x^2}}{2}=\frac{2}{3}x^2\sqrt{25-4x^2}.

Answer: V(x)=23x2254x2,x(0,52).V(x)=\frac{2}{3}x^2\sqrt{25-4x^2}, \medspace x\in (0, \frac{5}{2}).



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment