Δf=∂x2∂2f+∂y2∂2f=0
So let's find second derivatives:
∂x∂f=(arctan(xy))x′=−x2+y2y∂x2∂2f=(−x2+y2y)x′=(x2+y2)22xy∂y∂f=(arctan(xy))y′=x2+y2x∂y2∂2f=(x2+y2x)y′=−(x2+y2)22xy
And now substitute in the formula:
Δf=(x2+y2)22xy−(x2+y2)22xy=0
So f(x,y)=arctan(xy) satisfies Laplace's equation
Comments
Leave a comment