Answer to Question #135763 in Calculus for Promise Omiponle

Question #135763
3. Evaluate the limit

lim(x,y)->(2,2) (x-y)/(x^4-y^4)
1
Expert's answer
2020-09-29T18:18:18-0400

x4y4=(x2)2(y2)2x^4-y^4=(x^2)^2-(y^2)^2

Using the formula (a2b2)=(a+b)(ab),(a^2-b^2)=(a+b)(a-b), we get

x4y4=(x2+y2)(x2y2)x^4-y^4=(x^2+y^2)(x^2-y^2)

Again, (x2y2)(x^2-y^2) can be written as (x+y)(xy)(x+y)(x-y)

x4y4=(x2+y2)(x+y)(xy)\therefore x^4-y^4=(x^2+y^2)(x+y)(x-y)

Now lim(x,y)(2,2)xyx4y4\lim_{(x,y)\rightarrow(2,2)}\frac{x-y}{x^4-y^4}

=lim(x,y)(2,2)xy(x2+y2)(x+y)(xy)=\lim_{(x,y)\rightarrow(2,2)}\frac{x-y}{(x^2+y^2)(x+y)(x-y)}

=lim(x,y)(2,2)1(x2+y2)(x+y)=\lim_{(x,y)\rightarrow(2,2)}\frac{1}{(x^2+y^2)(x+y)}

=1(22+22)(2+2)=\frac{1}{(2^2+2^2)(2+2)}

=132=\frac{1}{32}

lim(x,y)(2,2)1(x2+y2)(x+y)=132\therefore \lim_{(x,y)\rightarrow(2,2)}\frac{1}{(x^2+y^2)(x+y)}=\frac{1}{32}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment