"x^4-y^4=(x^2)^2-(y^2)^2"
Using the formula "(a^2-b^2)=(a+b)(a-b)," we get
"x^4-y^4=(x^2+y^2)(x^2-y^2)"
Again, "(x^2-y^2)" can be written as "(x+y)(x-y)"
"\\therefore x^4-y^4=(x^2+y^2)(x+y)(x-y)"
Now "\\lim_{(x,y)\\rightarrow(2,2)}\\frac{x-y}{x^4-y^4}"
"=\\lim_{(x,y)\\rightarrow(2,2)}\\frac{x-y}{(x^2+y^2)(x+y)(x-y)}"
"=\\lim_{(x,y)\\rightarrow(2,2)}\\frac{1}{(x^2+y^2)(x+y)}"
"=\\frac{1}{(2^2+2^2)(2+2)}"
"=\\frac{1}{32}"
"\\therefore \\lim_{(x,y)\\rightarrow(2,2)}\\frac{1}{(x^2+y^2)(x+y)}=\\frac{1}{32}"
Comments
Leave a comment