x4−y4=(x2)2−(y2)2
Using the formula (a2−b2)=(a+b)(a−b), we get
x4−y4=(x2+y2)(x2−y2)
Again, (x2−y2) can be written as (x+y)(x−y)
∴x4−y4=(x2+y2)(x+y)(x−y)
Now lim(x,y)→(2,2)x4−y4x−y
=lim(x,y)→(2,2)(x2+y2)(x+y)(x−y)x−y
=lim(x,y)→(2,2)(x2+y2)(x+y)1
=(22+22)(2+2)1
=321
∴lim(x,y)→(2,2)(x2+y2)(x+y)1=321
Comments
Leave a comment