∫secx[ln(sinx)]dx=∫secx−2[ln(sinx)]sec2[ln(sinx)]dx
Now, we apply integration by Parts by the formula;
∫udv=uv−∫vdu
u=secx−2[ln(sinx)]
dv=sec2[ln(sinx)]dx
du=(x−2)secx−3[ln(sinx)].sec[ln(sinx)].tan[ln(sinx)]
v=tan[ln(sinx)]
∴ ∫secx[ln(sinx)]dx=secx−2[ln(sinx)]tan[ln(sinx)]−(x−2)∫secx−2[ln(sinx)]tan2[ln(sinx)]dx
But, tan2x=sec2x−1
∫secx[ln(sinx)]dx=secx−2[ln(sinx)]tan[ln(sinx)]−(x−2)∫secx[ln(sinx)]dx+(x−2)∫secx−2[ln(sinx)]dx
∫secx[ln(sinx)]dx+(x−2)∫secx[ln(sinx)]dx=secx−2[ln(sinx)]tan[ln(sinx)]−(x−2)∫secx[ln(sinx)]dx+(x−2)∫secx−2[ln(sinx)]dx+(x−2)∫secx[ln(sinx)]dx
(x−1)(x−1)∫secx[ln(sinx)]dx=x−1secx−2[ln(sinx)]tan[ln(sinx)]+x−1x−2∫secx−2[ln(sinx)]dx
Therefore,
∫secx[ln(sinx)]dx=x−1secx−2[ln(sinx)]tan[ln(sinx)]+x−1x−2∫secx−2[ln(sinx)]dx
Where,x=1
Comments