Question #135368
Integrate sec^xlog(sinx)dx
1
Expert's answer
2020-09-29T17:58:58-0400

secx[ln(sinx)]dx=secx2[ln(sinx)]sec2[ln(sinx)]dx\int sec^x[ln (sin x)]dx = \int sec^{x-2} [ln (sin x)] sec^{2} [ln (sin x)] dx


Now, we apply integration by Parts by the formula;


udv=uvvdu\int udv = uv - \int vdu


u=secx2[ln(sinx)]u = sec^{x-2} [ln (sin x)]

dv=sec2[ln(sinx)]dxdv =sec^{2} [ln (sin x)] dx

du=(x2)secx3[ln(sinx)].sec[ln(sinx)].tan[ln(sinx)]du = (x-2) sec^{x-3} [ln (sin x)] . sec [ln (sin x)] .tan [ln (sin x)]

v=tan[ln(sinx)]v = tan [ln (sin x)]


\therefore secx[ln(sinx)]dx=secx2[ln(sinx)]tan[ln(sinx)](x2)secx2[ln(sinx)]tan2[ln(sinx)]dx\int sec^x[ln (sin x)]dx = sec^{x-2} [ln (sin x)] tan [ln (sin x)] - (x-2) \int sec^{x-2} [ln (sin x)] tan^2 [ln (sin x)] dx

But, tan2x=sec2x1tan^2x = sec^2x -1


secx[ln(sinx)]dx=secx2[ln(sinx)]tan[ln(sinx)](x2)secx[ln(sinx)]dx+(x2)secx2[ln(sinx)]dx\int sec^x [ln (sin x)]dx = sec^{x-2} [ln (sin x)] tan [ln (sin x)] - (x-2) \int sec^x [ln (sin x)]dx + (x-2) \int sec^{x-2} [ln (sin x)] dx


secx[ln(sinx)]dx+(x2)secx[ln(sinx)]dx=secx2[ln(sinx)]tan[ln(sinx)](x2)secx[ln(sinx)]dx+(x2)secx2[ln(sinx)]dx+(x2)secx[ln(sinx)]dx\int sec^x [ln (sin x)]dx + (x-2) \int sec^x [ln (sin x)]dx = sec^{x-2} [ln (sin x)] tan [ln (sin x)] - \sout {(x-2) \int sec^x [ln (sin x)]dx} + (x-2) \int sec^{x-2} [ln (sin x)] dx + \sout{(x-2) \int sec^x [ln (sin x)]dx}

(x1)secx[ln(sinx)]dx(x1)=secx2[ln(sinx)]tan[ln(sinx)]x1+x2secx2[ln(sinx)]dxx1\frac{\sout{(x-1)} \int sec^x [ln (sin x)]dx}{\sout{(x-1)}} = \frac{ sec^{x-2} [ln (sin x)] tan [ln (sin x)]}{x-1} + \frac{x-2 \int sec^{x-2} [ln (sin x)] dx}{x-1}


Therefore,Therefore,

secx[ln(sinx)]dx=secx2[ln(sinx)]tan[ln(sinx)]x1+x2x1secx2[ln(sinx)]dx\int sec^x [ln (sin x)]dx = \frac{ sec^{x-2} [ln (sin x)] tan [ln (sin x)]}{x-1} + \frac{x-2 }{x-1} \int sec^{x-2} [ln (sin x)] dx

Where,x1Where, x \not = 1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS