"\\int sec^x[ln (sin x)]dx = \\int sec^{x-2} [ln (sin x)] sec^{2} [ln (sin x)] dx"
Now, we apply integration by Parts by the formula;
"\\int udv = uv - \\int vdu"
"u = sec^{x-2} [ln (sin x)]"
"dv =sec^{2} [ln (sin x)] dx"
"du = (x-2) sec^{x-3} [ln (sin x)] . sec [ln (sin x)] .tan [ln (sin x)]"
"v = tan [ln (sin x)]"
"\\therefore" "\\int sec^x[ln (sin x)]dx = sec^{x-2} [ln (sin x)] tan [ln (sin x)] - (x-2) \\int sec^{x-2} [ln (sin x)] tan^2 [ln (sin x)] dx"
But, "tan^2x = sec^2x -1"
"\\int sec^x [ln (sin x)]dx = sec^{x-2} [ln (sin x)] tan [ln (sin x)] - (x-2) \\int sec^x [ln (sin x)]dx + (x-2) \\int sec^{x-2} [ln (sin x)] dx"
"\\int sec^x [ln (sin x)]dx + (x-2) \\int sec^x [ln (sin x)]dx = sec^{x-2} [ln (sin x)] tan [ln (sin x)] - \\sout {(x-2) \\int sec^x [ln (sin x)]dx} + (x-2) \\int sec^{x-2} [ln (sin x)] dx + \\sout{(x-2) \\int sec^x [ln (sin x)]dx}"
"\\frac{\\sout{(x-1)} \\int sec^x [ln (sin x)]dx}{\\sout{(x-1)}} = \\frac{ sec^{x-2} [ln (sin x)] tan [ln (sin x)]}{x-1} + \\frac{x-2 \\int sec^{x-2} [ln (sin x)] dx}{x-1}"
"Therefore,"
"\\int sec^x [ln (sin x)]dx = \\frac{ sec^{x-2} [ln (sin x)] tan [ln (sin x)]}{x-1} + \\frac{x-2 }{x-1} \\int sec^{x-2} [ln (sin x)] dx"
"Where, x \\not = 1"
Comments
Leave a comment