Question #134660
Differentiate the following with respect to x

e^x log x/ x+1
1
Expert's answer
2020-09-24T17:54:08-0400

Not sure whether it is .../(x+1) or .../x + 1 so I'll just provide both.

1.


(exlogxx+1)==(exlogx)(x+1)exlogx(x+1)(x+1)2==(exlogx+exx)(x+1)exlogx(x+1)2==xexlogx+ex+exx(x+1)2=exxlogx+1+1x(x+1)2(\dfrac{e^x\log x}{x+1})' = \\ =\dfrac{(e^x\log x)'\cdot (x+1)-e^x\log x\cdot (x+1)'}{(x+1)^2}=\\ =\dfrac{(e^x\log x+\frac{e^x}{x})\cdot (x+1)-e^x\log x}{(x+1)^2}=\\ =\dfrac{xe^x\log x+e^x+\frac{e^x}{x}}{(x+1)^2}=e^x\cdot\dfrac{x\log x+1+\frac{1}{x}}{(x+1)^2}

2.


(exlogxx+1)==(exlogx)xexlogx(x)x2==(exlogx+exx)xexlogxx2==xexlogx+exexlogxx2==exxlogx+1logxx2(\dfrac{e^x\log x}{x}+1)' = \\ =\dfrac{(e^x\log x)'\cdot x-e^x\log x\cdot (x)'}{x^2}=\\ =\dfrac{(e^x\log x+\frac{e^x}{x})\cdot x-e^x\log x}{x^2}=\\ =\dfrac{xe^x\log x+e^x-e^x\log x}{x^2}=\\ =e^x\cdot\dfrac{x\log x+1-\log x}{x^2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS