Not sure whether it is .../(x+1) or .../x + 1 so I'll just provide both.
1.
(x+1exlogx)′==(x+1)2(exlogx)′⋅(x+1)−exlogx⋅(x+1)′==(x+1)2(exlogx+xex)⋅(x+1)−exlogx==(x+1)2xexlogx+ex+xex=ex⋅(x+1)2xlogx+1+x1 2.
(xexlogx+1)′==x2(exlogx)′⋅x−exlogx⋅(x)′==x2(exlogx+xex)⋅x−exlogx==x2xexlogx+ex−exlogx==ex⋅x2xlogx+1−logx
Comments