Not sure whether it is .../(x+1) or .../x + 1 so I'll just provide both.
1.
"(\\dfrac{e^x\\log x}{x+1})' = \\\\\n=\\dfrac{(e^x\\log x)'\\cdot (x+1)-e^x\\log x\\cdot (x+1)'}{(x+1)^2}=\\\\\n=\\dfrac{(e^x\\log x+\\frac{e^x}{x})\\cdot (x+1)-e^x\\log x}{(x+1)^2}=\\\\\n=\\dfrac{xe^x\\log x+e^x+\\frac{e^x}{x}}{(x+1)^2}=e^x\\cdot\\dfrac{x\\log x+1+\\frac{1}{x}}{(x+1)^2}" 2.
"(\\dfrac{e^x\\log x}{x}+1)' = \\\\\n=\\dfrac{(e^x\\log x)'\\cdot x-e^x\\log x\\cdot (x)'}{x^2}=\\\\\n=\\dfrac{(e^x\\log x+\\frac{e^x}{x})\\cdot x-e^x\\log x}{x^2}=\\\\\n=\\dfrac{xe^x\\log x+e^x-e^x\\log x}{x^2}=\\\\\n=e^x\\cdot\\dfrac{x\\log x+1-\\log x}{x^2}"
Comments
Leave a comment