let y=exlogxdifferentiating both sides w.r.t to ′x′...we getlet \space y= \frac{e^x}{logx}\\differentiating \space both \space sides \space w.r.t \space to \space 'x'...we \space getlet y=logxexdifferentiating both sides w.r.t to ′x′...we get
dydx=logx∗ddxex−ex∗ddxlogx(logx)2\frac{dy}{dx}= \frac{logx*\frac {d}{dx}e^x - e^x*\frac{d}{dx}logx}{(logx)^2}\\dxdy=(logx)2logx∗dxdex−ex∗dxdlogx ( using quotient rule of differentiation i.e ddx(u/v)=v∗dudx−u∗dvdxv2\frac {d}{dx}(u/v) = \frac{v*\frac{du}{dx} - u*\frac{dv}{dx} }{v^2}dxd(u/v)=v2v∗dxdu−u∗dxdv )
or,dydx=logx∗ex−ex∗1/x(logx)2or, \frac{dy}{dx}= \frac{logx*e^x - e^x*1/x}{(logx)^2}\\or,dxdy=(logx)2logx∗ex−ex∗1/x
or,dydx=ex[logx − 1/x](logx)2or, \frac{dy}{dx}=\frac{ e^x [logx \space - \space 1/x]}{(logx)^2}or,dxdy=(logx)2ex[logx − 1/x] (ANSWER)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments