"let \\space y= \\frac{e^x}{logx}\\\\differentiating \\space both \\space sides \\space w.r.t \\space to \\space 'x'...we \\space get"
"\\frac{dy}{dx}= \\frac{logx*\\frac {d}{dx}e^x - e^x*\\frac{d}{dx}logx}{(logx)^2}\\\\" ( using quotient rule of differentiation i.e "\\frac {d}{dx}(u\/v) = \\frac{v*\\frac{du}{dx} - u*\\frac{dv}{dx}\n}{v^2}" )
"or, \\frac{dy}{dx}= \\frac{logx*e^x - e^x*1\/x}{(logx)^2}\\\\"
"or, \\frac{dy}{dx}=\\frac{ e^x [logx \\space - \\space 1\/x]}{(logx)^2}" (ANSWER)
Comments
Leave a comment