Question #134659
Differentiate the following with respect to x

e^x/log x
1
Expert's answer
2020-09-28T20:55:46-0400

let y=exlogxdifferentiating both sides w.r.t to x...we getlet \space y= \frac{e^x}{logx}\\differentiating \space both \space sides \space w.r.t \space to \space 'x'...we \space get

dydx=logxddxexexddxlogx(logx)2\frac{dy}{dx}= \frac{logx*\frac {d}{dx}e^x - e^x*\frac{d}{dx}logx}{(logx)^2}\\ ( using quotient rule of differentiation i.e ddx(u/v)=vdudxudvdxv2\frac {d}{dx}(u/v) = \frac{v*\frac{du}{dx} - u*\frac{dv}{dx} }{v^2} )


or,dydx=logxexex1/x(logx)2or, \frac{dy}{dx}= \frac{logx*e^x - e^x*1/x}{(logx)^2}\\


or,dydx=ex[logx  1/x](logx)2or, \frac{dy}{dx}=\frac{ e^x [logx \space - \space 1/x]}{(logx)^2} (ANSWER)




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS