LetI=∫1+sinx1dxSubstituteZ=tan(2x)I=∫1+1+Z22Z11+Z22dZ=∫1+Z2+2Z12dZ=∫(Z+1)22dZ=1+Z−2+C=1+tan(2x)−2+CMultiplying the numerator anddenominatorofIbycos(2x)sin(2x),we have;I=cos(2x)sin(2x)+sin2(2x)−2cos(2x)sin(2x)+CIt is also known thatsin(x)=2cos(2x)sin(2x)&cos(x)=1−2sin2(2x)∴I=cos(2x)sin(2x)+sin2(2x)−2cos(2x)sin(2x)+C=2sinx+21−cosx−sinx+C=1−cosx+sinx−2sinx+C=cotx−cosecx−12+C∴I=∫1+sinx1dx=cotx−cosecx−12+C
Comments