"\\displaystyle\\textsf{Let}\\hspace{0.1cm}I = \\int \\frac{1}{1 + \\sin{x}}\\hspace{0.1cm} \\mathrm{d}x \\\\\n\n\\textsf{Substitute}\\hspace{0.1cm} Z = \\tan\\left(\\frac{x}{2}\\right) \\\\\n\n\\begin{aligned}\nI &= \\int \\frac{1}{1 + \\frac{2Z}{1 + Z^2}}\\hspace{0.1cm} \\frac{2\\mathrm{d}Z}{1 + Z^2}\\\\\n&= \\int \\frac{1}{1 + Z^2 + 2Z}\\hspace{0.1cm}2\\mathrm{d}Z = \\int \\frac{2}{(Z + 1)^2}\\hspace{0.1cm}\\mathrm{d}Z \\\\&= \\frac{-2}{1 + Z} + C \\\\&= \\frac{-2}{1 + \\tan\\left(\\frac{x}{2}\\right)} + C\\\\\n\\end{aligned}\\\\\n\n\\textsf{Multiplying the numerator and}\\\\ \\textsf{denominator} \\hspace{0.1cm}\\textsf{of}\\hspace{0.1cm} I\\hspace{0.1cm}\\textsf{by} \\hspace{0.1cm}\\cos\\left(\\frac{x}{2}\\right)\\sin\\left(\\frac{x}{2}\\right), \\hspace{0.1cm} \\textsf{we have;}\\\\\nI =\\frac{-2\\cos\\left(\\frac{x}{2}\\right)\\sin\\left(\\frac{x}{2}\\right)}{\\cos\\left(\\frac{x}{2}\\right)\\sin\\left(\\frac{x}{2}\\right) + \\sin^2\\left(\\frac{x}{2}\\right)} + C\\\\\n\n\\textsf{It is also known that}\\hspace{0.1cm} \\\\\\sin{(x)} = 2\\cos\\left(\\frac{x}{2}\\right)\\sin\\left(\\frac{x}{2}\\right) \\hspace{0.1cm}\\&\\hspace{0.1cm}\\\\\\cos{(x)} = 1 - 2\\sin^2\\left(\\frac{x}{2}\\right)\\\\\n\n\\begin{aligned}\n\\therefore I &=\\frac{-2\\cos\\left(\\frac{x}{2}\\right)\\sin\\left(\\frac{x}{2}\\right)}{\\cos\\left(\\frac{x}{2}\\right)\\sin\\left(\\frac{x}{2}\\right) + \\sin^2\\left(\\frac{x}{2}\\right)} + C\\\\\n&=\\frac{-\\sin{x}}{\\frac{\\sin{x}}{2} + \\frac{1 - \\cos{x}}{2}} + C= \\frac{-2\\sin{x}}{1 - \\cos{x} + \\sin{x}} + C\\\\&=\\frac{2}{\\cot{x} -\\cosec{x} - 1} + C\n\\end{aligned}\\\\\n\n\n\\therefore I = \\int \\frac{1}{1 + \\sin{x}}\\hspace{0.1cm} \\mathrm{d}x = \\frac{2}{\\cot{x} -\\cosec{x} - 1} + C"
Comments
Leave a comment