Letf(x)=x20+2x−10f(x+δx)=(x+δx)20+2(x+δx)−10=r=0∑20(r20)x20−r(δx)r+2x+2δx−10(Binomial theorem)f(x+δx)−f(x)=r=0∑20(r20)x20−r(δx)r+2x+2δx−10−(x20+2x−10)=r=1∑20(r20)x20−r(δx)r+x20+2x+2δx−10−(x20+2x−10)=r=1∑20(r20)x20−r(δx)r+2δxδxf(x+δx)−f(x)=r=1∑20(r20)x20−r(δx)r−1+2=(120)x19+r=2∑20(r20)x20−r(δx)r−1+2=20x19+r=2∑20(r20)x20−r(δx)r−1+2⇒δx→0limδxf(x+δx)−f(x)=f′(x)=20x19+2+δx→0lim((220)x18δx+...+(δx)19)=20x19+2∴f′(x)=20x19+2
Comments