Question #134604
Differentiate x^20 +2x -10 from first principle
1
Expert's answer
2020-09-24T12:00:32-0400

Letf(x)=x20+2x10f(x+δx)=(x+δx)20+2(x+δx)10=r=020(20r)x20r(δx)r+2x+2δx10(Binomial theorem)f(x+δx)f(x)=r=020(20r)x20r(δx)r+2x+2δx10(x20+2x10)=r=120(20r)x20r(δx)r+x20+2x+2δx10(x20+2x10)=r=120(20r)x20r(δx)r+2δxf(x+δx)f(x)δx=r=120(20r)x20r(δx)r1+2=(201)x19+r=220(20r)x20r(δx)r1+2=20x19+r=220(20r)x20r(δx)r1+2limδx0f(x+δx)f(x)δx=f(x)=20x19+2+limδx0((202)x18δx+...+(δx)19)=20x19+2f(x)=20x19+2\textsf{Let}\hspace{0.1cm}\displaystyle f(x) = x^{20} + 2x - 10\\ f(x + \delta x) = \\(x + \delta x)^{20} + 2(x + \delta x) - 10=\\ \sum_{r = 0}^{20} \binom{20}{r} x^{20-r} (\delta x)^r + 2x + 2\delta x - 10\hspace{1cm} \textsf{(Binomial theorem)}\\ f(x + \delta x) - f(x) = \sum_{r = 0}^{20} \binom{20}{r}x^{20-r} (\delta x)^r + 2x + 2\delta x - 10 - (x^{20} + 2x - 10)= \\ \sum_{r = 1}^{20}\binom{20}{r} x^{20-r} (\delta x)^r + x^{20} + 2x + 2\delta x - 10 - (x^{20} + 2x - 10) = \\ \sum_{r = 1}^{20} \binom{20}{r}x^{20-r} (\delta x)^r + 2\delta x \\ \frac{f(x + \delta x) - f(x)}{\delta x} = \sum_{r = 1}^{20}\binom{20}{r}x^{20-r} (\delta x)^{r - 1} + 2 = \binom{20}{1}x^{19} + \sum_{r = 2}^{20}\binom{20}{r}x^{20-r} (\delta x)^{r - 1} + 2 =\\20x^{19} + \sum_{r = 2}^{20}\binom{20}{r} x^{20-r} (\delta x)^{r - 1} + 2\\ \Rightarrow\lim_{\delta x \rightarrow 0}\frac{f(x + \delta x) - f(x)}{\delta x} =\\ f'(x) = 20x^{19} + 2 + \lim_{\delta x \rightarrow 0} \left(\binom{20}{2} x^{18} \delta x +...+(\delta x)^{19}\right) = 20x^{19} + 2\\ \therefore f'(x) = 20x^{19} + 2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS