"\\textsf{Let}\\hspace{0.1cm}\\displaystyle f(x) = x^{20} + 2x - 10\\\\\nf(x + \\delta x) = \\\\(x + \\delta x)^{20} + 2(x + \\delta x) - 10=\\\\ \\sum_{r = 0}^{20} \\binom{20}{r} x^{20-r} (\\delta x)^r + 2x + 2\\delta x - 10\\hspace{1cm} \\textsf{(Binomial theorem)}\\\\\n\nf(x + \\delta x) - f(x) = \\sum_{r = 0}^{20} \\binom{20}{r}x^{20-r} (\\delta x)^r + 2x + 2\\delta x - 10 - (x^{20} + 2x - 10)= \\\\\n\\sum_{r = 1}^{20}\\binom{20}{r} x^{20-r} (\\delta x)^r + x^{20} + 2x + 2\\delta x - 10 - (x^{20} + 2x - 10) = \\\\\n\\sum_{r = 1}^{20} \\binom{20}{r}x^{20-r} (\\delta x)^r + 2\\delta x \\\\\n\n\n\\frac{f(x + \\delta x) - f(x)}{\\delta x} = \\sum_{r = 1}^{20}\\binom{20}{r}x^{20-r} (\\delta x)^{r - 1} + 2 = \\binom{20}{1}x^{19} + \\sum_{r = 2}^{20}\\binom{20}{r}x^{20-r} (\\delta x)^{r - 1} + 2 =\\\\20x^{19} + \\sum_{r = 2}^{20}\\binom{20}{r} x^{20-r} (\\delta x)^{r - 1} + 2\\\\\n\n\n\\Rightarrow\\lim_{\\delta x \\rightarrow 0}\\frac{f(x + \\delta x) - f(x)}{\\delta x} =\\\\\n\nf'(x) = 20x^{19} + 2 + \\lim_{\\delta x \\rightarrow 0} \\left(\\binom{20}{2} x^{18} \\delta x +...+(\\delta x)^{19}\\right) = 20x^{19} + 2\\\\\n\\therefore f'(x) = 20x^{19} + 2"
Comments
Leave a comment