∂x∂f=2xy+y(−sin(xy))+y1cos2(yx)1∂y∂f=x2+x(−sin(xy))+(−y2x)cos2(yx)1∂x∂y∂2f=∂y∂x∂2f=2x+(−sin(xy))+xy(−cos(xy))++(−y21)cos2(yx)1+(−y2x)(y1)2cos(yx)(−sin(yx))(−cos4(yx)1)==2x−sin(xy)−xycos(xy)−y21cos2(yx)1−y3xcos3(yx)2sin(yx)∂x2∂2f=2y+y2(−cos(xy))+y21(−sin(yx))(cos3(yx)−2)==2y−y2cos(xy)+y21cos3(yx)2sin(yx)∂y2∂2f=−x2cos(xy)+y32xcos2(yx)1+y4x2cos3(yx)2sin(yx)
Comments