"(1)\\\\\\lim_{(x, y) \\rightarrow (0,0)}\\left( \\frac{5x^2}{x^2 + 5y^2}\\right) \\\\\n\n\\textsf{Along the} \\hspace{0.1cm} x\\hspace{0.1cm} \\textsf{axis}, y = 0\\\\\n\n\n\\begin{aligned}\n\\lim_{(x, y) \\rightarrow (0,0)}\\left( \\frac{5x^2}{x^2 + 5y^2} \\right) &= \\lim_{(x, y) \\rightarrow (0,0)}\\left( \\frac{5x^2}{x^2 + 5(0)^2}\\right) \\\\&= \\lim_{(x, y) \\rightarrow (0,0)} \\left(\\frac{5x^2}{x^2} \\right)\\\\& = \\frac{5}{1} = 5\n\\end{aligned}\\\\\n\n\n(2)\\\\\\textsf{Along the} \\hspace{0.1cm} y\\hspace{0.1cm} \\textsf{axis}, x = 0\\\\\n\n\n\\begin{aligned}\n\\lim_{(x, y) \\rightarrow (0,0)}\\left( \\frac{5x^2}{x^2 + 5y^2} \\right)&= \\lim_{(x,y) \\rightarrow (0,0)}\\left( \\frac{5(0)^2}{((0))^2 + 5y^2}\\right) \\\\&= 0\n\\end{aligned}\\\\\n\n\n\n(3)\\\\\\textsf{Along the line} \\hspace{0.1cm} y = mx\\\\\n\n\n\\begin{aligned}\n\\lim_{(x, y) \\rightarrow (0,0)} \\left(\\frac{5x^2}{x^2 + 5y^2}\\right) &= \\lim_{(x, y) \\rightarrow (0,0)}\\left( \\frac{5x^2}{x^2 + 5m^2x^2}\\right) \\\\&= \\lim_{(x, y) \\rightarrow (0,0)}\\left( \\frac{5}{1 + 5m^2}\\right) \\\\& = \\frac{5}{1 + 5m^2}\n\\end{aligned}\\\\\n\n\n\n(4) \\\\\\textsf{Since the results in} \\hspace{0.1cm}(1), (2), (3) \\hspace{0.1cm}\\textsf{are unequal}, \\\\\\textsf{the limit does not exist.}"
Comments
Dear Promise Omiponle, please use the panel for submitting new questions. The statement of the new question is incomplete. What should be done in the new question?
For the surface 1/x+1/y+1/z= 1 evaluate
Leave a comment