"y^2 (1 + x^2) = x^2(1 - x^2)\\\\\n\\textsf{Differentiating both sides, we have;}\\\\\n\\begin{aligned}\n2yy' + 2yy'x^2 + 2xy^2 &= 2x - 4x^3\\\\\ny'(2y + 2yx^2) + 2xy^2 &= 2x - 4x^3\n\\end{aligned}\\\\\n\n\\textsf{At stationary point}\\hspace{0.1cm} y' = 0.\\\\\n\n\\begin{aligned} \ny^2 &= \\frac{2x - 4x^3}{2x}\\\\\ny^2 &= 1 - 2x^2\\\\\nx^2(1 - x^2) &= (1 - 2x^2)(1 + x^2)\\\\\nx^2 - x^4 &= 1 + x^2 - 2x^2 - 2x^4\\\\\nx^4 &= -2x^2 + 1\\\\\nx^4 + 2x^2 - 1 &= 0\n\\end{aligned} \\\\\n\nx^2 = \\frac{-2 \\pm \\sqrt{8}}{2}\\\\\nx^2 = -1 \\pm \\sqrt{2}\\\\\n\n\\textsf{The RHS of}\\hspace{0.1cm} x^2 \\textsf{cannot be negative}\\\\\\textsf{in order to yield} \\hspace{0.1cm}x\\\\\n\\therefore x = \\pm\\sqrt{\\frac{-2 + \\sqrt{8}}{2}} = \\pm\\sqrt{{-1 + \\sqrt{2}}}\\\\\n\n\\therefore x = \\pm\\sqrt{\\frac{-2 + \\sqrt{8}}{2}} = \\pm\\sqrt{{-1 + \\sqrt{2}}}\\\\\n\n\nx = \\pm \\sqrt{{-1 + \\sqrt{2}}} \\approx \\pm 0.6436\\\\\n\n\n\n\n\\textsf{At}\\hspace{0.1cm} x = 0.6436, y = \\pm 0.6436\\sqrt{\\frac{1 - 0.6436^2}{1 + 0.6436^2}}, y \\approx \\pm 0.4142.\\\\\n\n\n\\textsf{At}\\hspace{0.1cm} x = -0.6436, y \\approx \\mp 0.4142 \\\\\n\n\n\\therefore \\textsf{The stationary points are}\\\\(0.6436, 0.4142), (0.6436, -0.4142), \\\\(-0.6436, 0.4142),(-0.6436, -0.4142).\\\\\n\n\n\\textsf{Calculating the}\\hspace{0.1cm}x \\hspace{0.1cm} \\textsf{and} \\hspace{0.1cm}y\\hspace{0.1cm}\\textrm{intercepts}\\\\\n\n\n\\textsf{At}\\hspace{0.1cm} x = 0, y = 0 \\\\\n\n\n\n\\textsf{At} \\hspace{0.1cm}y = 0, x\\sqrt{1 - x\u00b2} = 0 \\Rightarrow x = 0, x = -1, 1. \\\\\n\n\\therefore \\textsf{The}\\hspace{0.1cm}x \\hspace{0.1cm}\\textrm{intercept}\\hspace{0.1cm} \\textsf{is}\\hspace{0.1cm} (-1, 0),(0,0) \\hspace{0.1cm}\\& \\hspace{0.1cm}(1, 0)\\\\ \n\n\n\\textsf{and}\\hspace{0.1cm}\\textsf{the}\\hspace{0.1cm} y\\hspace{0.1cm}\\textrm{intercept} \\hspace{0.1cm} \\textsf{is} \\hspace{0.1cm} (0, 0). \\\\\n\n\\textsf{The graph is in the given below}"
Comments
Leave a comment