trace the curve y^2(1+x^2)=x^2(1-x^2) stating all the properties used
1
Expert's answer
2020-10-02T09:34:16-0400
y2(1+x2)=x2(1−x2)Differentiating both sides, we have;2yy′+2yy′x2+2xy2y′(2y+2yx2)+2xy2=2x−4x3=2x−4x3At stationary pointy′=0.y2y2x2(1−x2)x2−x4x4x4+2x2−1=2x2x−4x3=1−2x2=(1−2x2)(1+x2)=1+x2−2x2−2x4=−2x2+1=0x2=2−2±8x2=−1±2The RHS ofx2cannot be negativein order to yieldx∴x=±2−2+8=±−1+2∴x=±2−2+8=±−1+2x=±−1+2≈±0.6436Atx=0.6436,y=±0.64361+0.643621−0.64362,y≈±0.4142.Atx=−0.6436,y≈∓0.4142∴The stationary points are(0.6436,0.4142),(0.6436,−0.4142),(−0.6436,0.4142),(−0.6436,−0.4142).Calculating thexandyinterceptsAtx=0,y=0Aty=0,x1−x2=0⇒x=0,x=−1,1.∴Thexinterceptis(−1,0),(0,0)&(1,0)andtheyinterceptis(0,0).The graph is in the given below
Comments