Question #136201
\int \:\left(x^2-2\right)^3x^3dx
1
Expert's answer
2020-10-01T16:01:07-0400

(x22)3x3dx=[u=x22du=2xdxdx=12xdu]=\int(x^2 - 2)^3x^3dx = \begin{bmatrix} u = x^2 - 2 \\ du = 2xdx \\ dx = \frac{1}{2x}du \end{bmatrix} =

=12u3(u+2)du=12(u4+2u3)du==12(u4du+2u3du)=12(u55+u42)==u510+u44=[u=x22]=(x22)510+(x22)44+C= \frac{1}{2} \int u^3(u+2)du = \frac{1}{2} \int (u^4 + 2u^3)du = \\ = \frac{1}{2}(\int u^4du + 2\int u^3 du) = \frac{1}{2}(\frac{u^5}{5} + \frac{u^4}{2}) = \\ =\frac{u^5}{10} + \frac{u^4}{4} = \begin{bmatrix} u = x^2 - 2 \end{bmatrix} = \frac{(x^2 - 2)^5}{10} + \frac{(x^2 - 2)^4}{4} + C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS