∫(x2−2)3x3dx=[u=x2−2du=2xdxdx=12xdu]=\int(x^2 - 2)^3x^3dx = \begin{bmatrix} u = x^2 - 2 \\ du = 2xdx \\ dx = \frac{1}{2x}du \end{bmatrix} =∫(x2−2)3x3dx=⎣⎡u=x2−2du=2xdxdx=2x1du⎦⎤=
=12∫u3(u+2)du=12∫(u4+2u3)du==12(∫u4du+2∫u3du)=12(u55+u42)==u510+u44=[u=x2−2]=(x2−2)510+(x2−2)44+C= \frac{1}{2} \int u^3(u+2)du = \frac{1}{2} \int (u^4 + 2u^3)du = \\ = \frac{1}{2}(\int u^4du + 2\int u^3 du) = \frac{1}{2}(\frac{u^5}{5} + \frac{u^4}{2}) = \\ =\frac{u^5}{10} + \frac{u^4}{4} = \begin{bmatrix} u = x^2 - 2 \end{bmatrix} = \frac{(x^2 - 2)^5}{10} + \frac{(x^2 - 2)^4}{4} + C=21∫u3(u+2)du=21∫(u4+2u3)du==21(∫u4du+2∫u3du)=21(5u5+2u4)==10u5+4u4=[u=x2−2]=10(x2−2)5+4(x2−2)4+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments