Question #136210
\int \:\frac{xe^x}{\left(1+x^2\right)}dx
1
Expert's answer
2020-10-06T18:41:35-0400

xex(1+x)2dx=(x+11)ex(1+x)2dx=ex1+xdxex(1+x)2dx=\int \:\frac{xe^x}{\left(1+x\right)^2}dx =\int \:\frac{(x+1-1)e^x}{(1+x)^2}dx =\int \:\frac{e^x}{1+x}dx -\int \:\frac{e^x}{(1+x)^2}dx =


u=1x+1,dv=exdx,du=1(1+x)2dx,v=ex|u=\frac{1}{x+1}, dv=e^xdx, du=-\frac{1}{(1+x)^2}dx, v=e^x|


=11+xex+ex(1+x)2dxex(1+x)2dx=11+xex+C=\frac{1}{1+x}e^x+\int \:\frac{e^x}{(1+x)^2}dx -\int \:\frac{e^x}{(1+x)^2}dx =\frac{1}{1+x}e^x+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS