Question #136209
\int \:cos5xcos2xdx
1
Expert's answer
2020-10-05T11:42:20-0400

Lety=cos(5x)cos(2x)It is known thatcos(AB)=cos(A)cos(B)+sin(A)sin(B)&cos(A+B)=cos(A)cos(B)sin(A)sin(B)Adding both equations yields,cos(AB)2+cos(A+B)2=cos(A)cos(B)y=cos(7x)2+cos(3x)2ydx=cos(7x)2+cos(3x)2dx=sin(7x)14+sin(3x)6+Ccos(5x)cos(2x)dx=sin(7x)14+sin(3x)6+CWhereCis an arbitrary constant\textsf{Let}\hspace{0.1cm}y = \cos(5x)\cos(2x)\\ \textsf{It is known that}\\ \cos(A - B ) = \cos(A)\cos(B) + \sin(A)\sin(B)\hspace{0.1cm}\& \\ \cos(A + B ) = \cos(A)\cos(B) - \sin(A)\sin(B) \\ \textsf{Adding both equations yields,} \displaystyle\frac{\cos(A - B )}{2} + \frac{\cos(A + B)}{2}= \cos(A)\cos(B) \\ \therefore y = \frac{\cos(7x )}{2} + \frac{\cos(3x)}{2}\\ \begin{aligned} \int y\hspace{0.1cm}\mathrm{d}x & = \int \frac{\cos(7x )}{2} + \frac{\cos(3x)}{2} \hspace{0.1cm}\mathrm{d}x \\&= \frac{\sin(7x )}{14} + \frac{\sin(3x)}{6} + C \end{aligned}\\ \int \cos(5x)\cos(2x) \displaystyle\hspace{0.1cm}\mathrm{d}x = \frac{\sin(7x )}{14} + \frac{\sin(3x)}{6} + C\\ \textsf{Where}\hspace{0.1cm} C\hspace{0.1cm}\textsf{is an arbitrary constant}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS