"\\textsf{Let}\\hspace{0.1cm}y = \\cos(5x)\\cos(2x)\\\\\n\n\n\\textsf{It is known that}\\\\\n\n\\cos(A - B ) = \\cos(A)\\cos(B) + \\sin(A)\\sin(B)\\hspace{0.1cm}\\& \\\\\n\n\\cos(A + B ) = \\cos(A)\\cos(B) - \\sin(A)\\sin(B) \\\\\n\n\n\\textsf{Adding both equations yields,}\n\n\n\\displaystyle\\frac{\\cos(A - B )}{2} + \\frac{\\cos(A + B)}{2}= \\cos(A)\\cos(B) \\\\\n\n\n\\therefore y = \\frac{\\cos(7x )}{2} + \\frac{\\cos(3x)}{2}\\\\\n\n\\begin{aligned}\n\\int y\\hspace{0.1cm}\\mathrm{d}x\n& = \\int \\frac{\\cos(7x )}{2} + \\frac{\\cos(3x)}{2} \\hspace{0.1cm}\\mathrm{d}x \\\\&= \\frac{\\sin(7x )}{14} + \\frac{\\sin(3x)}{6} + C\n\\end{aligned}\\\\\n\n\n\n\\int \\cos(5x)\\cos(2x) \\displaystyle\\hspace{0.1cm}\\mathrm{d}x = \\frac{\\sin(7x )}{14} + \\frac{\\sin(3x)}{6} + C\\\\\n\\textsf{Where}\\hspace{0.1cm} C\\hspace{0.1cm}\\textsf{is an arbitrary constant}"
Comments
Leave a comment