Question #136207
\int \:sin^2xdx
1
Expert's answer
2020-10-05T10:40:53-0400

Solution

sin2xdx\int \:sin^2x dx Here, we apply reduction formula which is illustrated below;


sinnxdx=\int \:sin^nxdx = sinn1(x).sin(x)dx\int \:sin^{n-1}(x).sin (x)dx (When spread by reduction formula)


Now, sinn1(x).sin(x)dx\int \:sin^{n-1}(x).sin (x)dx can be solved by Integration by parts, i.e.


udv=uvvdu\int udv = uv - \int vdu Where;


u=sinn1(x)u = sin^{n-1}(x)


dv=sin(x)dxdv = sin (x)dx


v=cos(x)v = - cos (x)


du=(n1)sinn2(x)cos(x)dxdu = (n-1)sin^{n-2} (x)cos (x)dx


Therefore,


sinn1(x).sin(x)dx=sinn1(x)cos(x)+(n1)sinn2(x)cos2(x)dx\int \:sin^{n-1}(x).sin (x)dx = - sin^{n-1}(x) cos (x) +(n-1) \int sin^{n-2} (x)cos^2 (x) dx


But cos2(x)=1sin2(x)cos ^2(x) = 1-sin^2(x)


sinn1(x).sin(x)dx=sinn1(x)cos(x)+(n1)sinn2(x)(1sin2(x))dx\therefore \int \:sin^{n-1}(x).sin (x)dx = - sin^{n-1}(x) cos (x) +(n-1) \int sin^{n-2} (x)(1-sin^2(x))dx


    sinn1(x).sin(x)dx=sinn1(x)cos(x)+(n1)(sinn2(x)sinn(x))dx\implies \int \:sin^{n-1}(x).sin (x)dx = - sin^{n-1}(x) cos (x) +(n-1) \int (sin^{n-2} (x)-sin^n(x)) dx


    sinn1(x).sin(x)dx=sinn1(x)cos(x)+(n1)[sinn2(x)dxsinn(x)dx]\implies \int \:sin^{n-1}(x).sin(x)dx = - sin^{n-1}(x) cos (x) +(n-1) [\int sin^{n-2} (x)dx- \int sin^n(x) dx]

Bringing back the original integral;

    sinn(x)dx=sinn1(x)cos(x)+(n1)sinn2(x)dx(n1)sinn(x)dx\implies \int \:sin^n(x)dx = - sin^{n-1}(x) cos (x) +(n-1) \int sin^{n-2} (x)dx- (n-1)\int sin^n(x) dx


1sinn(x)dx+(n1)sinn(x)dx=sinn1(x)cos(x)+(n1)(sinn2(x)dx\therefore 1\int \:sin^n(x)dx + (n-1)\int sin^n(x) dx= - sin^{n-1}(x) cos (x) +(n-1) \int (sin^{n-2} (x)dx


Which is; nsinn(x)dx=sinn1(x)cos(x)+(n1)(sinn2(x)dxn\int sin^n(x)dx = - sin^{n-1}(x) cos (x) +(n-1) \int (sin^{n-2} (x)dx


nsinn(x)dxn=sinn1(x)cos(x)n+(n1)(sinn2(x)dxn{n\int sin^n(x)dx \above{2pt} n} = {- sin^{n-1}(x) cos (x) \above{2pt} n} + {(n-1) \int (sin^{n-2} (x)dx \above{2pt} n}


    sinn(x)dx=1nsinn1(x)cos(x)+n1n(sinn2(x)dx\implies \int sin^n(x)dx = -{1 \above{2pt} n} sin^{n-1}(x) cos (x) + {n-1 \above{2pt} n} \int (sin^{n-2} (x) dx

We can rearrange such that;


    sinn(x)dx=n1nsinn2(x)dx1nsinn1(x)cos(x)\implies \int sin^n(x)dx ={n-1 \above{2pt} n} \int sin^{n-2} (x) dx -{1 \above{2pt} n} sin^{n-1}(x) cos (x)


Now, with n=2,n =2 , we have;


sin2(x)dx=212sin22(x)dx12sin21(x)cos(x)\int sin^2(x)dx ={2-1 \above{2pt} 2} \int sin^{2-2} (x) dx -{1 \above{2pt} 2} sin^{2-1}(x) cos (x) simplifying;


=12sin0(x)dx12sin(x)cos(x)={1 \above{2pt} 2} \int sin^0 (x) dx -{1 \above{2pt} 2} sin(x) cos (x)


=121dx12sin(x)cos(x)={1 \above{2pt} 2} \int 1 dx -{1 \above{2pt} 2} sin(x) cos (x)

Now solving;


1dx=x\int 1 dx = x (Applying the constant rule)


    121dx12sin(x)cos(x)=x2sin(x)cos(x)2\implies {1 \above{2pt} 2} \int 1 dx -{1 \above{2pt} 2} sin(x) cos (x) = {x \above{2pt} 2} - {sin(x) cos (x) \above{2pt} 2}


And therefore,


sin2(x)dx=x2sin(x)cos(x)2+C\int sin^2(x)dx = {x \above{2pt} 2} - {sin(x) cos (x) \above{2pt} 2} + C Simplifying this;


we know that sin(2x)=2sin(x)cos(x)sin (2x) = 2sin(x)cos(x)

therefore, sin(x)cos(x)=12sin(2x)sin(x)cos(x) = {1 \above{2pt} 2}sin(2x)


sin2(x)dx=x212sin(2x)2+C\therefore \int sin^2(x)dx = {x \above{2pt} 2} - {{1\above{2pt} 2} sin(2x) \above{2pt} 2} + C


=x2sin(2x)4+C={x \above{2pt} 2} - { sin(2x) \above{2pt} 4} + C


=sin(2x)2x4+C=-{sin (2x) - 2x \above{2pt} 4} + C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS