Solution
"\\int \\:sin^2x dx" Here, we apply reduction formula which is illustrated below;
"\\int \\:sin^nxdx =" "\\int \\:sin^{n-1}(x).sin (x)dx" (When spread by reduction formula)
Now, "\\int \\:sin^{n-1}(x).sin (x)dx" can be solved by Integration by parts, i.e.
"\\int udv = uv - \\int vdu" Where;
"u = sin^{n-1}(x)"
"dv = sin (x)dx"
"v = - cos (x)"
"du = (n-1)sin^{n-2} (x)cos (x)dx"
Therefore,
"\\int \\:sin^{n-1}(x).sin (x)dx = - sin^{n-1}(x) cos (x) +(n-1) \\int sin^{n-2} (x)cos^2 (x) dx"
But "cos ^2(x) = 1-sin^2(x)"
"\\therefore \\int \\:sin^{n-1}(x).sin (x)dx = - sin^{n-1}(x) cos (x) +(n-1) \\int sin^{n-2} (x)(1-sin^2(x))dx"
"\\implies \\int \\:sin^{n-1}(x).sin (x)dx = - sin^{n-1}(x) cos (x) +(n-1) \\int (sin^{n-2} (x)-sin^n(x)) dx"
"\\implies \\int \\:sin^{n-1}(x).sin(x)dx = - sin^{n-1}(x) cos (x) +(n-1) [\\int sin^{n-2} (x)dx- \\int sin^n(x) dx]"
Bringing back the original integral;
"\\implies \\int \\:sin^n(x)dx = - sin^{n-1}(x) cos (x) +(n-1) \\int sin^{n-2} (x)dx- (n-1)\\int sin^n(x) dx"
"\\therefore 1\\int \\:sin^n(x)dx + (n-1)\\int sin^n(x) dx= - sin^{n-1}(x) cos (x) +(n-1) \\int (sin^{n-2} (x)dx"
Which is; "n\\int sin^n(x)dx = - sin^{n-1}(x) cos (x) +(n-1) \\int (sin^{n-2} (x)dx"
"{n\\int sin^n(x)dx \\above{2pt} n} = {- sin^{n-1}(x) cos (x) \\above{2pt} n} + {(n-1) \\int (sin^{n-2} (x)dx \\above{2pt} n}"
"\\implies \\int sin^n(x)dx = -{1 \\above{2pt} n} sin^{n-1}(x) cos (x) + {n-1 \\above{2pt} n} \\int (sin^{n-2} (x) dx"
We can rearrange such that;
"\\implies \\int sin^n(x)dx ={n-1 \\above{2pt} n} \\int sin^{n-2} (x) dx -{1 \\above{2pt} n} sin^{n-1}(x) cos (x)"
Now, with "n =2 ," we have;
"\\int sin^2(x)dx ={2-1 \\above{2pt} 2} \\int sin^{2-2} (x) dx -{1 \\above{2pt} 2} sin^{2-1}(x) cos (x)" simplifying;
"={1 \\above{2pt} 2} \\int sin^0 (x) dx -{1 \\above{2pt} 2} sin(x) cos (x)"
"={1 \\above{2pt} 2} \\int 1 dx -{1 \\above{2pt} 2} sin(x) cos (x)"
Now solving;
"\\int 1 dx = x" (Applying the constant rule)
"\\implies {1 \\above{2pt} 2} \\int 1 dx -{1 \\above{2pt} 2} sin(x) cos (x) = {x \\above{2pt} 2} - {sin(x) cos (x) \\above{2pt} 2}"
And therefore,
"\\int sin^2(x)dx = {x \\above{2pt} 2} - {sin(x) cos (x) \\above{2pt} 2} + C" Simplifying this;
we know that "sin (2x) = 2sin(x)cos(x)"
therefore, "sin(x)cos(x) = {1 \\above{2pt} 2}sin(2x)"
"\\therefore \\int sin^2(x)dx = {x \\above{2pt} 2} - {{1\\above{2pt} 2} sin(2x) \\above{2pt} 2} + C"
"={x \\above{2pt} 2} - { sin(2x) \\above{2pt} 4} + C"
"=-{sin (2x) - 2x \\above{2pt} 4} + C"
Comments
Leave a comment