Solution
∫sin2xdx Here, we apply reduction formula which is illustrated below;
∫sinnxdx= ∫sinn−1(x).sin(x)dx (When spread by reduction formula)
Now, ∫sinn−1(x).sin(x)dx can be solved by Integration by parts, i.e.
∫udv=uv−∫vdu Where;
u=sinn−1(x)
dv=sin(x)dx
v=−cos(x)
du=(n−1)sinn−2(x)cos(x)dx
Therefore,
∫sinn−1(x).sin(x)dx=−sinn−1(x)cos(x)+(n−1)∫sinn−2(x)cos2(x)dx
But cos2(x)=1−sin2(x)
∴∫sinn−1(x).sin(x)dx=−sinn−1(x)cos(x)+(n−1)∫sinn−2(x)(1−sin2(x))dx
⟹∫sinn−1(x).sin(x)dx=−sinn−1(x)cos(x)+(n−1)∫(sinn−2(x)−sinn(x))dx
⟹∫sinn−1(x).sin(x)dx=−sinn−1(x)cos(x)+(n−1)[∫sinn−2(x)dx−∫sinn(x)dx]
Bringing back the original integral;
⟹∫sinn(x)dx=−sinn−1(x)cos(x)+(n−1)∫sinn−2(x)dx−(n−1)∫sinn(x)dx
∴1∫sinn(x)dx+(n−1)∫sinn(x)dx=−sinn−1(x)cos(x)+(n−1)∫(sinn−2(x)dx
Which is; n∫sinn(x)dx=−sinn−1(x)cos(x)+(n−1)∫(sinn−2(x)dx
nn∫sinn(x)dx=n−sinn−1(x)cos(x)+n(n−1)∫(sinn−2(x)dx
⟹∫sinn(x)dx=−n1sinn−1(x)cos(x)+nn−1∫(sinn−2(x)dx
We can rearrange such that;
⟹∫sinn(x)dx=nn−1∫sinn−2(x)dx−n1sinn−1(x)cos(x)
Now, with n=2, we have;
∫sin2(x)dx=22−1∫sin2−2(x)dx−21sin2−1(x)cos(x) simplifying;
=21∫sin0(x)dx−21sin(x)cos(x)
=21∫1dx−21sin(x)cos(x)
Now solving;
∫1dx=x (Applying the constant rule)
⟹21∫1dx−21sin(x)cos(x)=2x−2sin(x)cos(x)
And therefore,
∫sin2(x)dx=2x−2sin(x)cos(x)+C Simplifying this;
we know that sin(2x)=2sin(x)cos(x)
therefore, sin(x)cos(x)=21sin(2x)
∴∫sin2(x)dx=2x−221sin(2x)+C
=2x−4sin(2x)+C
=−4sin(2x)−2x+C
Comments