"\\int \\:\\frac{1+sin\\left(mx\\right)}{cos^2\\left(mx\\right)}dx"
replacement
"u = mx; \\frac{du}{dx}=m;" "dx = \\frac{1}{m}du;"
"\\frac{1}{m}\\int\\frac{sin(u)+1}{cos^2(u)}du =\\frac{1}{m} \\int\\frac{sin(u)}{cos^2(u)}du+" "\\frac{1}{m}\\int\\frac{1}{cos^2(u)}du" = "=\\frac{1}{m} \\int\\frac{sin(u)}{cos^2(u)}du+\\frac{1}{m}tan(u)"
"\\frac{1}{m}\\int\\frac{sin(u)}{cos^2(u)}du" ; replacement "v=cosu;\\frac{dv}{du}=-sin(u);du=-\\frac{1}{sin(u)}dv"
"\\frac{1}{m}\\int\\frac{sin(u)}{cos^2(u)}du =-\\frac{1}{m}\\int\\frac{1}{v^2}dv=-\\frac{1}{mv}" ="-\\frac{1}{mcos(u)}"
"\\frac{1}{m}\\int\\frac{sin(u)+1}{cos^2(u)}du =\\frac{1}{m}tan(u)-- \\frac{1}{mcos(u)}"
reverse replacement u = mx
"\\int \\:\\frac{1+sin\\left(mx\\right)}{cos^2\\left(mx\\right)}dx =" "\\dfrac{\\tan\\left(mx\\right)}{m}+\\dfrac{1}{m\\cos\\left(mx\\right)} +C"
Answer: "\\dfrac{\\tan\\left(mx\\right)}{m}+\\dfrac{1}{m\\cos\\left(mx\\right)} +C"
Comments
Leave a comment