Question #136206
\int \:\frac{1+sin\left(mx\right)}{cos^2\left(mx\right)}dx
1
Expert's answer
2020-10-05T10:14:28-0400

1+sin(mx)cos2(mx)dx\int \:\frac{1+sin\left(mx\right)}{cos^2\left(mx\right)}dx

replacement

u=mx;dudx=m;u = mx; \frac{du}{dx}=m; dx=1mdu;dx = \frac{1}{m}du;


1msin(u)+1cos2(u)du=1msin(u)cos2(u)du+\frac{1}{m}\int\frac{sin(u)+1}{cos^2(u)}du =\frac{1}{m} \int\frac{sin(u)}{cos^2(u)}du+ 1m1cos2(u)du\frac{1}{m}\int\frac{1}{cos^2(u)}du =  =1msin(u)cos2(u)du+1mtan(u)=\frac{1}{m} \int\frac{sin(u)}{cos^2(u)}du+\frac{1}{m}tan(u)


1msin(u)cos2(u)du\frac{1}{m}\int\frac{sin(u)}{cos^2(u)}du ; replacement v=cosu;dvdu=sin(u);du=1sin(u)dvv=cosu;\frac{dv}{du}=-sin(u);du=-\frac{1}{sin(u)}dv

1msin(u)cos2(u)du=1m1v2dv=1mv\frac{1}{m}\int\frac{sin(u)}{cos^2(u)}du =-\frac{1}{m}\int\frac{1}{v^2}dv=-\frac{1}{mv} =1mcos(u)-\frac{1}{mcos(u)}


1msin(u)+1cos2(u)du=1mtan(u)1mcos(u)\frac{1}{m}\int\frac{sin(u)+1}{cos^2(u)}du =\frac{1}{m}tan(u)-- \frac{1}{mcos(u)}

reverse replacement u = mx

1+sin(mx)cos2(mx)dx=\int \:\frac{1+sin\left(mx\right)}{cos^2\left(mx\right)}dx = tan(mx)m+1mcos(mx)+C\dfrac{\tan\left(mx\right)}{m}+\dfrac{1}{m\cos\left(mx\right)} +C


Answer: tan(mx)m+1mcos(mx)+C\dfrac{\tan\left(mx\right)}{m}+\dfrac{1}{m\cos\left(mx\right)} +C

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS