∫cos2(mx)1+sin(mx)dx
replacement
u=mx;dxdu=m; dx=m1du;
m1∫cos2(u)sin(u)+1du=m1∫cos2(u)sin(u)du+ m1∫cos2(u)1du = =m1∫cos2(u)sin(u)du+m1tan(u)
m1∫cos2(u)sin(u)du ; replacement v=cosu;dudv=−sin(u);du=−sin(u)1dv
m1∫cos2(u)sin(u)du=−m1∫v21dv=−mv1 =−mcos(u)1
m1∫cos2(u)sin(u)+1du=m1tan(u)−−mcos(u)1
reverse replacement u = mx
∫cos2(mx)1+sin(mx)dx= mtan(mx)+mcos(mx)1+C
Answer: mtan(mx)+mcos(mx)1+C
Comments