\int \left(\frac{sin\left(x+a\right)}{m}+\frac{cos\left(x+b\right)}{n}\right)dx∫(sin(x+a)m+cos(x+b)n)dx=∫(sin(x+a)m)dx+∫(cos(x+b)n)dx=\int \left(\frac{sin\left(x+a\right)}{m}+\frac{cos\left(x+b\right)}{n}\right)dx=\int \left(\frac{sin\left(x+a\right)}{m}\right)dx+\int \left(\frac{cos\left(x+b\right)}{n}\right)dx=∫(msin(x+a)+ncos(x+b))dx=∫(msin(x+a))dx+∫(ncos(x+b))dx=
−cos(x+a)m+sin(x+b)n+C-\frac{cos\left(x+a\right)}{m}+\frac{sin\left(x+b\right)}{n}+C−mcos(x+a)+nsin(x+b)+C
Answer: sin(x+b)n−cos(x+a)m+C\frac{sin\left(x+b\right)}{n}-\frac{cos\left(x+a\right)}{m}+Cnsin(x+b)−mcos(x+a)+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments