Question #136776

Let z= 4ex lny ,x= ln(ucosv), and y=usinv.  Calculate 𝜕z/𝜕u and 𝜕z/𝜕v first using the chain rule, and then by writing z(u,v) = z(x(u,v),y(u,v)) and taking partial derivatives directly. Show all steps each way


1
Expert's answer
2020-10-05T18:16:48-0400

z=4exlny,x=ln(ucosv),y=usinv.z=4e^x\ln y, x=\ln(u\cos v), y=u\sin v.


Calculate zu\frac{\partial z}{\partial u} and zv\frac{\partial z}{\partial v} using the chain rule:


zu=zxxu+zyyu\frac{\partial z}{\partial u}=\frac{\partial z}{\partial x}\frac{\partial x}{\partial u}+\frac{\partial z}{\partial y}\frac{\partial y}{\partial u}


zu=4exlnycosvucosv+4ex1ysinv=4eln(ucosv)ln(usinv)1u+4eln(ucosv)1usinvsinv=4ucosvln(usinv)1u+4ucosv1u=4cosvln(usinv)+4cosv\frac{\partial z}{\partial u}= 4e^x\ln y\frac{\cos v}{u\cos v}+4e^x\frac{1}{y}\sin v= 4e^{\ln(u\cos v)}\ln(u\sin v)\frac{1}{u}+4e^{\ln(u\cos v)}\frac{1}{u\sin v}\sin v = 4u\cos v\ln(u\sin v)\frac{1}{u}+4u\cos v\frac{1}{u}= 4\cos v\ln(u\sin v)+4\cos v


zv=zxxv+zyyv\frac{\partial z}{\partial v}=\frac{\partial z}{\partial x}\frac{\partial x}{\partial v}+\frac{\partial z}{\partial y}\frac{\partial y}{\partial v}


zv=4exlnyusinvucosv+4ex1yucosv=4eln(ucosv)ln(usinv)sinvcosv+4eln(ucosv)1usinvucosv=4ucosvln(usinv)sinvcosv+4ucosv1usinvucosv=4uln(usinv)sinv+4ucos2vsinv\frac{\partial z}{\partial v}= 4e^x\ln y\frac{-u\sin v}{u\cos v}+4e^x\frac{1}{y}u\cos v= -4e^{\ln(u\cos v)}\ln(u\sin v)\frac{\sin v}{\cos v} +4e^{\ln(u\cos v)}\frac{1}{u\sin v}u\cos v= -4u\cos v\ln(u\sin v)\frac{\sin v}{\cos v} +4u\cos v\frac{1}{u\sin v}u\cos v=-4u\ln(u\sin v)\sin v+4u\frac{\cos^2 v}{\sin v}

Write z(u,v)=z(x(u,v),y(u,v))z(u,v) = z(x(u,v),y(u,v)) and take partial derivatives directly:


z=4eln(ucosv)ln(usinv)=4ucosvln(usinv)z=4e^{\ln(u\cos v)}\ln(u\sin v)=4u\cos v\ln(u\sin v)


zu=4cosvln(usinv)+4ucosvsinvusinv=4cosvln(usinv)+4cosv\frac{\partial z}{\partial u}= 4\cos v\ln(u\sin v)+4u\cos v\frac{\sin v}{u\sin v}= 4\cos v\ln(u\sin v)+4\cos v


zv=4usinvln(usinv)+4ucosvucosvusinv=4usinvln(usinv)+4ucos2vsinv\frac{\partial z}{\partial v}=-4u\sin v\ln(u\sin v)+4u\cos v\frac{u\cos v}{u\sin v}=-4u\sin v\ln(u\sin v)+4u\frac{\cos^2 v}{\sin v}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS