Let z= 4ex lny ,x= ln(ucosv), and y=usinv. Calculate 𝜕z/𝜕u and 𝜕z/𝜕v first using the chain rule, and then by writing z(u,v) = z(x(u,v),y(u,v)) and taking partial derivatives directly. Show all steps each way
"z=4e^x\\ln y, x=\\ln(u\\cos v), y=u\\sin v."
Calculate "\\frac{\\partial z}{\\partial u}" and "\\frac{\\partial z}{\\partial v}" using the chain rule:
"\\frac{\\partial z}{\\partial u}=\\frac{\\partial z}{\\partial x}\\frac{\\partial x}{\\partial u}+\\frac{\\partial z}{\\partial y}\\frac{\\partial y}{\\partial u}"
"\\frac{\\partial z}{\\partial u}= 4e^x\\ln y\\frac{\\cos v}{u\\cos v}+4e^x\\frac{1}{y}\\sin v= 4e^{\\ln(u\\cos v)}\\ln(u\\sin v)\\frac{1}{u}+4e^{\\ln(u\\cos v)}\\frac{1}{u\\sin v}\\sin v = 4u\\cos v\\ln(u\\sin v)\\frac{1}{u}+4u\\cos v\\frac{1}{u}=\n4\\cos v\\ln(u\\sin v)+4\\cos v"
"\\frac{\\partial z}{\\partial v}=\\frac{\\partial z}{\\partial x}\\frac{\\partial x}{\\partial v}+\\frac{\\partial z}{\\partial y}\\frac{\\partial y}{\\partial v}"
"\\frac{\\partial z}{\\partial v}= 4e^x\\ln y\\frac{-u\\sin v}{u\\cos v}+4e^x\\frac{1}{y}u\\cos v=\n -4e^{\\ln(u\\cos v)}\\ln(u\\sin v)\\frac{\\sin v}{\\cos v} +4e^{\\ln(u\\cos v)}\\frac{1}{u\\sin v}u\\cos v=\n -4u\\cos v\\ln(u\\sin v)\\frac{\\sin v}{\\cos v} +4u\\cos v\\frac{1}{u\\sin v}u\\cos v=-4u\\ln(u\\sin v)\\sin v+4u\\frac{\\cos^2 v}{\\sin v}"
Write "z(u,v) = z(x(u,v),y(u,v))" and take partial derivatives directly:
"z=4e^{\\ln(u\\cos v)}\\ln(u\\sin v)=4u\\cos v\\ln(u\\sin v)"
"\\frac{\\partial z}{\\partial u}= 4\\cos v\\ln(u\\sin v)+4u\\cos v\\frac{\\sin v}{u\\sin v}= 4\\cos v\\ln(u\\sin v)+4\\cos v"
"\\frac{\\partial z}{\\partial v}=-4u\\sin v\\ln(u\\sin v)+4u\\cos v\\frac{u\\cos v}{u\\sin v}=-4u\\sin v\\ln(u\\sin v)+4u\\frac{\\cos^2 v}{\\sin v}"
Comments
Leave a comment