LetIn=∫(x2+a2)ndxIntegrating by parts, we have;In=∫(x2+a2)nd(x)In=x(x2+a2)n−2n∫x2(x2+a2)n−1dx=x(x2+a2)n−2n∫x2+a2x2⋅(x2+a2)ndx=x(x2+a2)n−2n∫(1−x2+a2a2)(x2+a2)ndx=x(x2+a2)n−2n∫(x2+a2)n−a2(x2+a2)n−1dxIn=x(x2+a2)n−2n(In−a2In−1)In(1+2n)=x(x2+a2)n+2na2In−1∴In=1+2nx(x2+a2)n+1+2n2na2In−1Replacingnbyn/2∴In/2=1+nx(x2+a2)n+1+nna2I2n−1∴∫(x2+a2)2ndx=1+nx(x2+a2)n+1+nna2∫(x2+a2)2n−1dxEvaluatingI2n−1,We must replacenwithn−2∫(x2+a2)2n−1dx=n−1x(x2+a2)n−2+n−1(n−2)a2∫(x2+a2)2n−2dx
Comments