Question #136784
Show that the ellipsoid 3x^2+2y^2+z^2= 9 and the sphere x^2+y^2+z^2-8x-6y-8z+24 = 0 are tangent to each other at the point (1,1,2), i.e., they have the same tangent plane there.
1
Expert's answer
2020-10-11T17:40:47-0400

The equation of tangent plane is zz0=hx(x0,y0,z0)(xx0)+hy(x0,y0,z0)(yy0).z-z_0=h_{x}^{'}(x_0, y_0, z_0)(x-x_0)+h_{y}^{'}(x_0, y_0, z_0)(y-y_0).

We have F(x,y,z)=3x2+2y2+z29F(x, y, z)=3x^2+2y^2+z^2- 9 and G(x,y,z)=x2+y2+z28x6y8z+24G(x, y, z)=x^2+y^2+z^2-8x-6y-8z+24.

We must show that Fx(1,1,2)=Gx(1,1,2)F_{x}^{'}(1, 1, 2)=G_{x}^{'}(1, 1, 2) and Fy(1,1,2)=Gy(1,1,2).F_{y}^{'}(1, 1, 2)=G_{y}^{'}(1, 1, 2).

Fx=F(x,y,z)xF(x,y,z)z=6x2z=3xz,F_{x}^{'}=-\frac{\frac{\partial F(x, y, z)}{\partial x}}{\frac{\partial F(x, y, z)}{\partial z}}=-\frac{6x}{2z}=-\frac{3x}{z}, Fx(1,1,2)=32.F_{x}^{'}(1, 1, 2)=-\frac{3}{2}.

Fy=F(x,y,z)yF(x,y,z)z=4y2z=2yz,F_{y}^{'}=-\frac{\frac{\partial F(x, y, z)}{\partial y}}{\frac{\partial F(x, y, z)}{\partial z}}=-\frac{4y}{2z}=-\frac{2y}{z}, Fy(1,1,2)=1.F_{y}^{'}(1, 1, 2)=-1.

Gx=G(x,y,z)xG(x,y,z)z=2x82z8=x4z4,G_{x}^{'}=-\frac{\frac{\partial G(x, y, z)}{\partial x}}{\frac{\partial G(x, y, z)}{\partial z}}=-\frac{2x-8}{2z-8}=-\frac{x-4}{z-4}, Gx(1,1,2)=32.G_{x}^{'}(1, 1, 2)=-\frac{3}{2}.

Gy=G(x,y,z)yG(x,y,z)z=2y62z8=y3z4,G_{y}^{'}=-\frac{\frac{\partial G(x, y, z)}{\partial y}}{\frac{\partial G(x, y, z)}{\partial z}}=-\frac{2y-6}{2z-8}=-\frac{y-3}{z-4}, Gy(1,1,2)=1.G_{y}^{'}(1, 1, 2)=-1.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS