The equation of tangent plane is z−z0=hx′(x0,y0,z0)(x−x0)+hy′(x0,y0,z0)(y−y0).
We have F(x,y,z)=3x2+2y2+z2−9 and G(x,y,z)=x2+y2+z2−8x−6y−8z+24.
We must show that Fx′(1,1,2)=Gx′(1,1,2) and Fy′(1,1,2)=Gy′(1,1,2).
Fx′=−∂z∂F(x,y,z)∂x∂F(x,y,z)=−2z6x=−z3x, Fx′(1,1,2)=−23.
Fy′=−∂z∂F(x,y,z)∂y∂F(x,y,z)=−2z4y=−z2y, Fy′(1,1,2)=−1.
Gx′=−∂z∂G(x,y,z)∂x∂G(x,y,z)=−2z−82x−8=−z−4x−4, Gx′(1,1,2)=−23.
Gy′=−∂z∂G(x,y,z)∂y∂G(x,y,z)=−2z−82y−6=−z−4y−3, Gy′(1,1,2)=−1.
Comments