The equation of tangent plane is "z-z_0=h_{x}^{'}(x_0, y_0, z_0)(x-x_0)+h_{y}^{'}(x_0, y_0, z_0)(y-y_0)."
We have "F(x, y, z)=3x^2+2y^2+z^2- 9" and "G(x, y, z)=x^2+y^2+z^2-8x-6y-8z+24".
We must show that "F_{x}^{'}(1, 1, 2)=G_{x}^{'}(1, 1, 2)" and "F_{y}^{'}(1, 1, 2)=G_{y}^{'}(1, 1, 2)."
"F_{x}^{'}=-\\frac{\\frac{\\partial F(x, y, z)}{\\partial x}}{\\frac{\\partial F(x, y, z)}{\\partial z}}=-\\frac{6x}{2z}=-\\frac{3x}{z}," "F_{x}^{'}(1, 1, 2)=-\\frac{3}{2}."
"F_{y}^{'}=-\\frac{\\frac{\\partial F(x, y, z)}{\\partial y}}{\\frac{\\partial F(x, y, z)}{\\partial z}}=-\\frac{4y}{2z}=-\\frac{2y}{z}," "F_{y}^{'}(1, 1, 2)=-1."
"G_{x}^{'}=-\\frac{\\frac{\\partial G(x, y, z)}{\\partial x}}{\\frac{\\partial G(x, y, z)}{\\partial z}}=-\\frac{2x-8}{2z-8}=-\\frac{x-4}{z-4}," "G_{x}^{'}(1, 1, 2)=-\\frac{3}{2}."
"G_{y}^{'}=-\\frac{\\frac{\\partial G(x, y, z)}{\\partial y}}{\\frac{\\partial G(x, y, z)}{\\partial z}}=-\\frac{2y-6}{2z-8}=-\\frac{y-3}{z-4}," "G_{y}^{'}(1, 1, 2)=-1."
Comments
Leave a comment