Given, "f:\\mathbb{R}^3\\rightarrow\\mathbb{R}" to be a real valued map "(x,y,z)\\mapsto\\frac{\\sin(xy)}{z}" , now we have to find Linearization of "f(x,y,z)" at "(a,b,c)=(\\pi\/2,1,1)"
Since, from Taylor expansion we get
Now,
"f_x(x,yz)=\\frac{y}{z}\\cos(xy)\\implies f_x(\\pi\/2,1,1)=0\\\\\nf_y(x,y,z)=\\frac{x}{z}\\cos(xy)\\implies f_y(\\pi\/2,1,1)=0\\\\\nf_z(x,y,z)=-\\frac{1}{z^2}\\sin(xy)\\implies f_z(\\pi\/2,1,1)=-1"Thus,
"L(x,y,z)=1+(x-\\pi\/2)\\cdot 0+(y-1)\\cdot 0+(z-1)\\cdot(-1)\\\\\n\\implies L(x,y,z)=-z+2"
Comments
Leave a comment