f(x,y)=f(Z)= xy1/2
Fx of the function f(x,y) = y1/2
Fy of the function f(x,y) = (xy-1/2)/2
Now, linearization of a function f(x,y)=f(z) at (a,b) is given by
L(x,y) = f(a,b) + (x-a)fx(a,b) + (y-b)fy(a,b)
f(a,b) = f(-9,25)=(-9)(25)1/2= (-45)
fx(a,b) = fx(-9,25)=y1/2=(25)1/2=5
fy(a,b)=fy(-9,25)=(xy-1/2)/2=-9(25-1/2)/2
= -0.9
So, linearization of f(x,y) = xy1/2 at (a,b)
= (-9,25) is given by
L(x,y) = f(-9,25)+(x-(-9))fx(-9,25)+(y-25)
fy(-9,25)
L(x,y) = -45+(x+9)(5)+(y-25)(-0.9)
L(x,y) = -45+5x+45+(-0.9y+22.5)
L(x,y) = -45+5x+45-0.9y+22.5
L(x,y) = 5x-0.9y+22.5
so, linearization of f(x,y)=xy1/2 at (a,b)=
(-9,25) is given by
L(x,y) = 5x-0.9+22.5
Comments
Leave a comment