"(a)\\\\\\displaystyle F = \\frac{Gm}{r^2}\\\\\n\n\n\\frac{\\partial F}{\\partial r} = -2\\frac{Gm}{r^3}, \\,\\frac{\\partial F}{\\partial m} = \\frac{G}{r^2} \\\\\n\n\\textsf{The total differential}\\hspace{0.1cm}\\\\\n\\mathrm{d}F\\hspace{0.1cm}\\textsf{at}\\hspace{0.1cm} (m, r)\\hspace{0.1cm}\\textsf{is given by}\\\\\n\\mathrm{d}F = \\frac{\\partial F}{\\partial r}\\delta r + \\frac{\\partial F}{\\partial m}\\delta m\\\\\n\\mathrm{d}F = \\frac{G}{r^2}\\cdot\\delta m - 2\\frac{Gm}{r^3}\\delta r\\\\\n\n(b)\\\\ \\textsf{At}\\hspace{0.1cm} (100, 9)\\\\\\mathrm{d}F = \\frac{G}{9^2}\\delta m - 2\\cdot\\frac{100G}{9^3}\\delta r\\\\\n\\mathrm{d}F = \\frac{G}{81}\\delta m - \\frac{200G}{729}\\delta r\\\\\n\n\n(c)\\\\ \\textsf{Given that}\\hspace{0.1cm} \\delta r = -0.2, \\delta m = 0.2\\\\\n\n\\begin{aligned}\n\\mathrm{d}F &= \\frac{G}{81}(0.2) - \\frac{200G}{729}(-0.2) \\\\&= 0.2G\\left(\\frac{200}{729} +\\frac{1}{81}\\right) \\\\&= 0.2G\\cdot\\frac{209}{729} = \\frac{209G}{3645} \n\\end{aligned}"
Comments
Leave a comment