S=∫14(y−2)dy−∫14(y2−4y+2)dy=∫14(y−2)−(y2−4y+2)dy=∫14(y−2−y2+4y−2)dy=∫14(−y2+5y−4)dy=(−y3/3+5y2/2−4y)∣14=−43/3+5∗42/2−4∗4−(−13/3+5∗12/2−4∗1)=−64/3+40−16−(−1/3+5/2−4)=−64/3+40−16+1/3−5/2+4=−21−3/2+28=7−2.5=4.5S=∫_1^4(y-2)dy -∫_1^4(y^2-4y+2)dy =∫_1^4(y-2) -(y^2-4y+2)dy=∫_1^4(y-2-y^2+4y-2)dy=∫_1^4(-y^2+5y-4)dy=(-y^3/3+5y^2/2-4y)|_1^4=-4^3/3+5*4^2/2-4*4-(-1^3/3+5*1^2/2-4*1)=-64/3+40-16-(-1/3+5/2-4)=-64/3+40-16+1/3-5/2+4=-21-3/2+28=7-2.5=4.5S=∫14(y−2)dy−∫14(y2−4y+2)dy=∫14(y−2)−(y2−4y+2)dy=∫14(y−2−y2+4y−2)dy=∫14(−y2+5y−4)dy=(−y3/3+5y2/2−4y)∣14=−43/3+5∗42/2−4∗4−(−13/3+5∗12/2−4∗1)=−64/3+40−16−(−1/3+5/2−4)=−64/3+40−16+1/3−5/2+4=−21−3/2+28=7−2.5=4.5
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments