If "(x, y)\\not=(0, 0)"
"=\\dfrac{y^3(x^2+y^2)-2x^2y^3 }{(x^2 +y^2)^2}=\\dfrac{y^3(y^2-x^2)}{(x^2 +y^2)^2}"
"f_x(0,0)=\\lim\\limits_{h\\to 0}\\dfrac{f(0+h,0)-f(0,0) }{h}="
"=\\lim\\limits_{h\\to 0}\\dfrac{f(0+h,0)-f(0,0) }{h}="
"=\\lim\\limits_{h\\to 0}\\dfrac{ \\dfrac{h(0)^3 }{h^2 +(0)^2}-0 }{h}=0"
Let "x=rcos\\theta, y=r\\sin\\theta"
"=\\lim\\limits_{r\\to 0}\\dfrac{r^3\\sin^3\\theta r^2(\\cos^2\\theta-\\sin^2\\theta) }{r^4} ="
"=\\lim\\limits_{r\\to 0}r\\sin^3\\theta(\\cos^2\\theta-\\sin^2\\theta)=0=f_x(0,0)"
The function "f_x(x, y)" is continuous at "(0,0)."
Comments
Leave a comment