We can evaluate this integral by substitution.
Set "u=x^{3}+3x". This means "\\frac {du}{dx}=3x^{2}+3", or "dx=\\frac{du}{3(x^2+1)}."
Now
"\\int \\frac{x^2+1}{\\sqrt{x^3+3x}}dx=\\int \\frac{x^2+1}{\\sqrt{u}} \\frac{du}{3(x^2+1)}=\n\\int \\frac{du}{3 \\sqrt{u}}="
"=\\frac{1}{3} \\int \\frac{du}{\\sqrt{u}}= \\frac{1}{3} \\cdot 2\\sqrt{u}+C=\n\\frac{2}{3}\\sqrt{u}+C="
"=\\frac{2}{3}\\sqrt{x^3+3x}+C."
Comments
Leave a comment