We can evaluate this integral by substitution.
Set u=x3+3xu=x^{3}+3xu=x3+3x. This means dudx=3x2+3\frac {du}{dx}=3x^{2}+3dxdu=3x2+3, or dx=du3(x2+1).dx=\frac{du}{3(x^2+1)}.dx=3(x2+1)du.
Now
∫x2+1x3+3xdx=∫x2+1udu3(x2+1)=∫du3u=\int \frac{x^2+1}{\sqrt{x^3+3x}}dx=\int \frac{x^2+1}{\sqrt{u}} \frac{du}{3(x^2+1)}= \int \frac{du}{3 \sqrt{u}}=∫x3+3xx2+1dx=∫ux2+13(x2+1)du=∫3udu=
=13∫duu=13⋅2u+C=23u+C==\frac{1}{3} \int \frac{du}{\sqrt{u}}= \frac{1}{3} \cdot 2\sqrt{u}+C= \frac{2}{3}\sqrt{u}+C==31∫udu=31⋅2u+C=32u+C=
=23x3+3x+C.=\frac{2}{3}\sqrt{x^3+3x}+C.=32x3+3x+C.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments