Question #121529
Find the critical points and determine maxima or minima subject to the following constraint.
f(x,y,z) = 8x - 4z.
x^2+ 10y^2 + z^2 = 5.
1
Expert's answer
2020-06-14T17:40:52-0400

Apply the Lagrange multiplier method. Then L(x,y,z,λ)=8x4z+λ(x2+10y2+z25)L(x,y,z,\lambda)=8x-4z+\lambda(x^2+10y^2+z^2-5) then Lx=8+2λx,Ly=20λy,Lz=4+2λzL'_x=8+2\lambda x, L'_y=20\lambda y, L'_z=-4+2\lambda z . Solving the system Lx=0,Ly=0,Lz=0L'_x=0,L'_y=0,L'_z=0

and x2+10y2+z2=5x^2+10y^2+z^2=5 we get x1=2,y1=0,z1=1,λ1=2x_1=-2,y_1=0,z_1=1, \lambda _1=2 and x2=2,y2=0,z2=1,λ2=2x_2=2,y_2=0,z_2=-1,\lambda_2=-2 where (2,0,1),(2,0,1)(-2,0,1),(2,0,-1) is critical points.

Findiing Lx2=2λ,Ly2=20λ,Lz2=2λ,Lxy=Lxz=Lzy=0L''_{x^2}=2\lambda,L''_{y^2}=20\lambda,L''_{z^2}=2\lambda,L''_{xy}=L''_{xz}=L''_{zy}=0 we get

If λ=2\lambda=2 then (2,0,1)(-2,0,1) is point of minima constraint fmin=20f_{min}=-20

If λ=2\lambda=-2 then (2,0,1)(2,0,-1) is point of maxima constraint fmax=20f_{max}=20


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
11.06.20, 23:35

Dear Tau, please wait for a solution of the question. If you need meeting specific requirements, then you can submit an order.

Tau
11.06.20, 19:40

Please, I need the answer right now

LATEST TUTORIALS
APPROVED BY CLIENTS