Apply the Lagrange multiplier method. Then "L(x,y,z,\\lambda)=8x-4z+\\lambda(x^2+10y^2+z^2-5)" then "L'_x=8+2\\lambda x, L'_y=20\\lambda y, L'_z=-4+2\\lambda z" . Solving the system "L'_x=0,L'_y=0,L'_z=0"
and "x^2+10y^2+z^2=5" we get "x_1=-2,y_1=0,z_1=1, \\lambda _1=2" and "x_2=2,y_2=0,z_2=-1,\\lambda_2=-2" where "(-2,0,1),(2,0,-1)" is critical points.
Findiing "L''_{x^2}=2\\lambda,L''_{y^2}=20\\lambda,L''_{z^2}=2\\lambda,L''_{xy}=L''_{xz}=L''_{zy}=0" we get
If "\\lambda=2" then "(-2,0,1)" is point of minima constraint "f_{min}=-20"
If "\\lambda=-2" then "(2,0,-1)" is point of maxima constraint "f_{max}=20"
Comments
Dear Tau, please wait for a solution of the question. If you need meeting specific requirements, then you can submit an order.
Please, I need the answer right now
Leave a comment