Apply the Lagrange multiplier method. Then L(x,y,z,λ)=8x−4z+λ(x2+10y2+z2−5) then Lx′=8+2λx,Ly′=20λy,Lz′=−4+2λz . Solving the system Lx′=0,Ly′=0,Lz′=0
and x2+10y2+z2=5 we get x1=−2,y1=0,z1=1,λ1=2 and x2=2,y2=0,z2=−1,λ2=−2 where (−2,0,1),(2,0,−1) is critical points.
Findiing Lx2′′=2λ,Ly2′′=20λ,Lz2′′=2λ,Lxy′′=Lxz′′=Lzy′′=0 we get
If λ=2 then (−2,0,1) is point of minima constraint fmin=−20
If λ=−2 then (2,0,−1) is point of maxima constraint fmax=20
Comments
Dear Tau, please wait for a solution of the question. If you need meeting specific requirements, then you can submit an order.
Please, I need the answer right now