The area of the rectangle:
"S=2xy"
We have:
"y=h-xtan60\\degree"
where h is height of triangle
"y=a\\sqrt{3}\/2-x\\sqrt{3}"
where a is side length
Then:
"S=2x(a\\sqrt{3}\/2-x\\sqrt{3})"
"\\frac {dS}{dx}=a\\sqrt{3}-4x\\sqrt{3}=0"
"x=a\/4"
"S_{max}=2\\frac{a}{4}(\\frac{a\\sqrt{3}}{2}-\\frac{a\\sqrt{3}}{4})=\\frac{a^2\\sqrt{3}}{8}"
Answer:
"S_{max}=\\frac{8^2\\sqrt{3}}{8}=8\\sqrt{3}" cm
Comments
Leave a comment