The area of the rectangle:
S=2xyS=2xyS=2xy
We have:
y=h−xtan60°y=h-xtan60\degreey=h−xtan60°
where h is height of triangle
y=a3/2−x3y=a\sqrt{3}/2-x\sqrt{3}y=a3/2−x3
where a is side length
Then:
S=2x(a3/2−x3)S=2x(a\sqrt{3}/2-x\sqrt{3})S=2x(a3/2−x3)
dSdx=a3−4x3=0\frac {dS}{dx}=a\sqrt{3}-4x\sqrt{3}=0dxdS=a3−4x3=0
x=a/4x=a/4x=a/4
Smax=2a4(a32−a34)=a238S_{max}=2\frac{a}{4}(\frac{a\sqrt{3}}{2}-\frac{a\sqrt{3}}{4})=\frac{a^2\sqrt{3}}{8}Smax=24a(2a3−4a3)=8a23
Answer:
Smax=8238=83S_{max}=\frac{8^2\sqrt{3}}{8}=8\sqrt{3}Smax=8823=83 cm
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments