Let f be a continuous function on the interval [a,b], and let c=2a+b. Suppose that F is any antiderivative of f with F(a)=3 and F(b)=7.
Find:
∫abf(x)dx By the Fundamental Theorem of Calculus (Part 2) if f is continuous on [a,b] then
∫abf(x)dx=F(b)−F(a), where F is any antiderivative of f.
Given F(a)=3 and F(b)=7. Then
∫abf(x)dx=F(b)−F(a)=7−3=4 b)
−∫baf(x)dx=−(−∫abf(x)dx)=∫abf(x)dx=4 c)
∫acf(x)dx+∫cbf(x)dx=∫abf(x)dx=4 d)
Dx[−(∫acf(x)dx+∫cbf(x)dx)]=Dx[−4]=0
2.
y=∣x−2∣={x−2−x+2if x≥2if x<2
Area=A=∫−72(−x+2)dx+∫211(x−2)f(x)dx=
=[−2x2+2x]2−7+[2x2−2x]112=
=−2+4+249+14+2121−22−2+4=81(units2) Area is 81 square units.
Comments