Question #121300
Let f be a continuous function on the interval [a,b], and let c = a+b 2 . Suppose that F is any antiderivative of f with F(a) = 3 and F(b) = 7.
Find: (a)Rb a f(x)dx (2 marks) (b) −Ra b f(x)dx (2 marks) (c)Rc a f(x)dx +Rb c f(x)dx (2 marks) (d) Dx[−(Rc a f(x)dx +Rb c f(x)dx)] (2 marks) 3. Find the area bounded by the curve y = |x−2|, the x-axis and the lines x = −7 and x = 11. (5 marks)
1
Expert's answer
2020-06-10T19:41:42-0400

Let ff be a continuous function on the interval [a,b],[a,b], and let c=a+b2.c=\dfrac{a+b}{2}. Suppose that FF is any antiderivative of ff with F(a)=3F(a)=3 and F(b)=7.F(b)=7.

Find:


abf(x)dx\displaystyle\int_{a}^bf(x)dx

By the Fundamental Theorem of Calculus (Part 2) if ff  is continuous on [a,b][a, b]  then


abf(x)dx=F(b)F(a),\displaystyle\int_{a}^bf(x)dx=F(b)-F(a),

where FF is any antiderivative of f.f.

Given F(a)=3F(a)=3 and F(b)=7.F(b)=7. Then


abf(x)dx=F(b)F(a)=73=4\displaystyle\int_{a}^bf(x)dx=F(b)-F(a)=7-3=4

b)


baf(x)dx=(abf(x)dx)=abf(x)dx=4-\displaystyle\int_{b}^af(x)dx=-(-\displaystyle\int_{a}^bf(x)dx)=\displaystyle\int_{a}^bf(x)dx=4

c)


acf(x)dx+cbf(x)dx=abf(x)dx=4\displaystyle\int_{a}^cf(x)dx+\displaystyle\int_{c}^bf(x)dx=\displaystyle\int_{a}^bf(x)dx=4

d)


Dx[(acf(x)dx+cbf(x)dx)]=Dx[4]=0D_x[-(\displaystyle\int_{a}^cf(x)dx+\displaystyle\int_{c}^bf(x)dx)]=D_x[-4]=0

2.


y=x2={x2if x2x+2if x<2y=|x-2|= \begin{cases} x-2 &\text{if } x\geq 2 \\ -x+2 &\text{if } x<2 \end{cases}

Area=A=72(x+2)dx+211(x2)f(x)dx=Area=A=\displaystyle\int_{-7}^2(-x+2)dx+\displaystyle\int_{2}^{11}(x-2)f(x)dx=

=[x22+2x]27+[x222x]112==[-{x^2\over 2}+2x]\begin{matrix} 2 \\ -7 \end{matrix}+[{x^2\over 2}-2x]\begin{matrix} 11 \\ 2 \end{matrix}=

=2+4+492+14+1212222+4=81(units2)=-2+4+{49\over 2}+14+{121\over 2}-22-2+4=81(units^2)

Area is 8181 square units.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS