What is the approximate area of the curve y = -e ^ (- 4x) between the x axis in the range (0, + ∞) ?
1
Expert's answer
2020-06-14T18:16:55-0400
"\\begin{aligned}\n&\\text{ The area of the curve y between the x axis given by }\\\\[1 em]\n\\int_{0}^{\\infty} - e^{-4 x} d x&=\\lim _{b \\rightarrow \\infty} \\int_{0}^{b} - e^{-4 x} d x \\\\[1 em]\n&=\\frac{1}{4}\\lim _{b \\rightarrow \\infty}\\left[-e^{-4 x}\\right]_{0}^{b} \\\\[1 em]\n&=\\frac{1}{4}\\lim _{b \\rightarrow \\infty}\\left[- e^{-4b}-\\left(- e^{0}\\right)\\right] \\\\[1 em]\n& \\text { Note that } \\ e^\\infty =\\infty \\\\[1 em]\n&\\Rightarrow \\lim _{b \\rightarrow \\infty}- \\frac{1}{e^{4b}}= -\\frac{1}{e^{\\infty}}=-\\frac{1}{\\infty}=0\\\\[1 em]\n&\\Rightarrow\\frac{1}{4}\\lim _{b \\rightarrow \\infty}\\left[- \\frac{1}{e^{4b}} -\\left(- e^{0}\\right)\\right] =\\frac{1}{4}(0-(-1))=\\frac{1}{4}\n\\end{aligned}"
Comments
Leave a comment