Parametric equation of curve CCC is r(t)=<t,2t2>,0≤t≤1r(t)=<t,2t^2>,0\leq t \leq1r(t)=<t,2t2>,0≤t≤1
Here, differential length dsdsds is,
ds=∥r′(t)∥dtds=∥r'(t) ∥dtds=∥r′(t)∥dt
=∥<1,4t>∥dt=∥ <1,4t>∥dt=∥<1,4t>∥dt
=12+(4t)2dt=\sqrt{1^2+(4t)^2}dt=12+(4t)2dt
=1+16t2dt=\sqrt{1+16t^2}dt=1+16t2dt
Now, the line integral is evaluated as,
∫Cf(x,y)ds=∫C8y+1ds\int_Cf(x,y)ds=\int_C\sqrt{8y+1}ds∫Cf(x,y)ds=∫C8y+1ds
=∫018(2t2)+11+16t2dt=\int_0^{1}\sqrt{8(2t^2)+1}\sqrt{1+16t^2}dt=∫018(2t2)+11+16t2dt
=∫011+16t21+16t2dt=\int_0^{1}\sqrt{1+16t^2}\sqrt{1+16t^2}dt=∫011+16t21+16t2dt
=∫01(1+16t2)dt=\int_0^{1}(1+16t^2)dt=∫01(1+16t2)dt
=[t+16(t33)]01=[ t+16(\frac{t^3}{3})]_0^{1}=[t+16(3t3)]01
=1+163=1+\frac{16}{3}=1+316
=193=\frac{19}{3}=319
Hence, option (c) is correct.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments