Question #121735
Use logarithmic differentiation to solve dy over dy, if y = xsquared square root 7x-14 over (1+x) to the power 4
1
Expert's answer
2020-06-11T20:43:34-0400

y = x27x14(1+x)4\frac { x²\sqrt {7x-14}} {(1+x)⁴}

ln(y) = ln [ x27x14(1+x)4\frac { x²\sqrt {7x-14}} {(1+x)⁴} ]

Using properties of logarithm

ln(y) = ln(x²) + ln 7x14\sqrt {7x-14} - ln(1+x)⁴

=> ln(y) = 2 ln x + 12\frac {1} {2} ln (7x-14) - 4ln(1+x)

Differentiating with respect to x

1y\frac {1} {y} dydx\frac {dy} {dx} = 2x\frac {2} {x} + 72(7x14)\frac {7} {2(7x-14)} - 41+x\frac {4} {1+x}

So

dydx\frac {dy} {dx} = y [ 2x\frac {2} {x} + 72(7x14)\frac {7} {2(7x-14)} - 41+x\frac {4} {1+x} ]

= x27x14(1+x)4\frac { x²\sqrt {7x-14}} {(1+x)⁴} [ 2x\frac {2} {x} + 72(7x14)\frac {7} {2(7x-14)} - 41+x\frac {4} {1+x} ]




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
15.06.20, 22:57

In the solution ln means the natural logarithm, that is, the logarithm with the base e.

moreen
15.06.20, 07:00

Does dat in means log in this question

LATEST TUTORIALS
APPROVED BY CLIENTS