y = x 2 7 x − 14 ( 1 + x ) 4 \frac { x²\sqrt {7x-14}} {(1+x)⁴} ( 1 + x ) 4 x 2 7 x − 14
ln(y) = ln [ x 2 7 x − 14 ( 1 + x ) 4 \frac { x²\sqrt {7x-14}} {(1+x)⁴} ( 1 + x ) 4 x 2 7 x − 14 ]
Using properties of logarithm
ln(y) = ln(x²) + ln 7 x − 14 \sqrt {7x-14} 7 x − 14 - ln(1+x)⁴
=> ln(y) = 2 ln x + 1 2 \frac {1} {2} 2 1 ln (7x-14) - 4ln(1+x)
Differentiating with respect to x
1 y \frac {1} {y} y 1 d y d x \frac {dy} {dx} d x d y = 2 x \frac {2} {x} x 2 + 7 2 ( 7 x − 14 ) \frac {7} {2(7x-14)} 2 ( 7 x − 14 ) 7 - 4 1 + x \frac {4} {1+x} 1 + x 4
So
d y d x \frac {dy} {dx} d x d y = y [ 2 x \frac {2} {x} x 2 + 7 2 ( 7 x − 14 ) \frac {7} {2(7x-14)} 2 ( 7 x − 14 ) 7 - 4 1 + x \frac {4} {1+x} 1 + x 4 ]
= x 2 7 x − 14 ( 1 + x ) 4 \frac { x²\sqrt {7x-14}} {(1+x)⁴} ( 1 + x ) 4 x 2 7 x − 14 [ 2 x \frac {2} {x} x 2 + 7 2 ( 7 x − 14 ) \frac {7} {2(7x-14)} 2 ( 7 x − 14 ) 7 - 4 1 + x \frac {4} {1+x} 1 + x 4 ]
Comments
In the solution ln means the natural logarithm, that is, the logarithm with the base e.
Does dat in means log in this question