This is the formula for finding the derivative from the first principle:
dxdy=limΔx→0Δxf(x+Δx)−f(x).
So we have
dxd(x21)=dxd(x)=limΔx→0Δxx+Δx−x=
=limΔx→0Δxx+Δx−x⋅x+Δx+xx+Δx+x=
=limΔx→0Δx(x+Δx+x)(x+Δx)2−(x)2=limΔx→0Δx(x+Δx+x)x+Δx−x=
=limΔx→0x+Δx+x1=x+x1=2x1=2x211.
Comments
Leave a comment