Answer to Question #121874 in Calculus for desmond

Question #121874
Use the method of Differentiation from the first principle to prove that the
the derivative of the square root of x is given below
d/dx x^1/2=1/2x^1/2
1
Expert's answer
2020-06-14T18:36:33-0400

This is the formula for finding the derivative from the first principle:

dydx=limΔx0f(x+Δx)f(x)Δx.\frac{dy}{dx}=\lim_{\Delta x \to 0} \frac {f(x+\Delta x)-f(x)}{\Delta x}.

So we have

ddx(x12)=ddx(x)=limΔx0x+ΔxxΔx=\frac{d}{dx}(x^{\frac{1}{2}})=\frac{d}{dx}(\sqrt x)=\lim_{\Delta x \to 0} \frac {\sqrt{x+\Delta x}-\sqrt{x}}{\Delta x}=

=limΔx0x+ΔxxΔxx+Δx+xx+Δx+x==\lim_{\Delta x \to 0} \frac {\sqrt{x+\Delta x}-\sqrt{x}}{\Delta x} \cdot \frac {\sqrt{x+\Delta x}+\sqrt{x}}{\sqrt{x+\Delta x}+\sqrt{x}}=

=limΔx0(x+Δx)2(x)2Δx(x+Δx+x)=limΔx0x+ΔxxΔx(x+Δx+x)==\lim_{\Delta x \to 0} \frac {(\sqrt{x+\Delta x})^2-(\sqrt{x})^2}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})} =\lim_{\Delta x \to 0} \frac {x+\Delta x-x}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}=

=limΔx01x+Δx+x=1x+x=12x=12x12.=\lim_{\Delta x \to 0} \frac {1}{\sqrt{x+\Delta x}+\sqrt{x}}= \frac {1}{\sqrt{x}+\sqrt{x}}= \frac {1}{2\sqrt{x}}=\frac {1}{2x^{\frac{1}{2}}}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment