This is the formula for finding the derivative from the first principle:
"\\frac{dy}{dx}=\\lim_{\\Delta x \\to 0} \\frac {f(x+\\Delta x)-f(x)}{\\Delta x}."
So we have
"\\frac{d}{dx}(x^{\\frac{1}{2}})=\\frac{d}{dx}(\\sqrt x)=\\lim_{\\Delta x \\to 0} \\frac {\\sqrt{x+\\Delta x}-\\sqrt{x}}{\\Delta x}="
"=\\lim_{\\Delta x \\to 0} \\frac {\\sqrt{x+\\Delta x}-\\sqrt{x}}{\\Delta x} \\cdot \\frac {\\sqrt{x+\\Delta x}+\\sqrt{x}}{\\sqrt{x+\\Delta x}+\\sqrt{x}}="
"=\\lim_{\\Delta x \\to 0} \\frac {(\\sqrt{x+\\Delta x})^2-(\\sqrt{x})^2}{\\Delta x(\\sqrt{x+\\Delta x}+\\sqrt{x})}\n=\\lim_{\\Delta x \\to 0} \\frac {x+\\Delta x-x}{\\Delta x(\\sqrt{x+\\Delta x}+\\sqrt{x})}="
"=\\lim_{\\Delta x \\to 0} \\frac {1}{\\sqrt{x+\\Delta x}+\\sqrt{x}}= \\frac {1}{\\sqrt{x}+\\sqrt{x}}=\n\\frac {1}{2\\sqrt{x}}=\\frac {1}{2x^{\\frac{1}{2}}}."
Comments
Leave a comment