This is the formula for finding the derivative from the first principle:
d y d x = lim Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x . \frac{dy}{dx}=\lim_{\Delta x \to 0} \frac {f(x+\Delta x)-f(x)}{\Delta x}. d x d y = lim Δ x → 0 Δ x f ( x + Δ x ) − f ( x ) .
So we have
d d x ( x 1 2 ) = d d x ( x ) = lim Δ x → 0 x + Δ x − x Δ x = \frac{d}{dx}(x^{\frac{1}{2}})=\frac{d}{dx}(\sqrt x)=\lim_{\Delta x \to 0} \frac {\sqrt{x+\Delta x}-\sqrt{x}}{\Delta x}= d x d ( x 2 1 ) = d x d ( x ) = lim Δ x → 0 Δ x x + Δ x − x =
= lim Δ x → 0 x + Δ x − x Δ x ⋅ x + Δ x + x x + Δ x + x = =\lim_{\Delta x \to 0} \frac {\sqrt{x+\Delta x}-\sqrt{x}}{\Delta x} \cdot \frac {\sqrt{x+\Delta x}+\sqrt{x}}{\sqrt{x+\Delta x}+\sqrt{x}}= = lim Δ x → 0 Δ x x + Δ x − x ⋅ x + Δ x + x x + Δ x + x =
= lim Δ x → 0 ( x + Δ x ) 2 − ( x ) 2 Δ x ( x + Δ x + x ) = lim Δ x → 0 x + Δ x − x Δ x ( x + Δ x + x ) = =\lim_{\Delta x \to 0} \frac {(\sqrt{x+\Delta x})^2-(\sqrt{x})^2}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}
=\lim_{\Delta x \to 0} \frac {x+\Delta x-x}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}= = lim Δ x → 0 Δ x ( x + Δ x + x ) ( x + Δ x ) 2 − ( x ) 2 = lim Δ x → 0 Δ x ( x + Δ x + x ) x + Δ x − x =
= lim Δ x → 0 1 x + Δ x + x = 1 x + x = 1 2 x = 1 2 x 1 2 . =\lim_{\Delta x \to 0} \frac {1}{\sqrt{x+\Delta x}+\sqrt{x}}= \frac {1}{\sqrt{x}+\sqrt{x}}=
\frac {1}{2\sqrt{x}}=\frac {1}{2x^{\frac{1}{2}}}. = lim Δ x → 0 x + Δ x + x 1 = x + x 1 = 2 x 1 = 2 x 2 1 1 .
Comments